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Abstract 

When designing programs or software for the implementation of Monte Carlo (MC) hypoth­

esis tests, we can save computation time by using sequential stopping boundaries. Such 

boundaries imply stopping resampling after relatively few replications if the early replica­

tions indicate a very large or very small p-value. We study a truncated sequential probability 

ratio test (SPRT) boundary and provide a tractable algorithm to implement it. We review 

two properties desired of any MC p-value, the validity of the p-value and a small resampling 

risk, where resampling risk is the probability that the accept/reject decision will be different 

than the decision from complete enumeration. We show how the algorithm can be used to 

calculate a valid p-value and confidence intervals for any truncated SPRT boundary. We 

show that a class of SPRT boundaries is minimax with respect to resampling risk and rec­

ommend a truncated version of boundaries in that class by comparing their resampling risk 

(RR) to the RR of fixed boundaries with the same maximum resample size. We study the 

lack of validity of some simple estimators of p-values and offer a new simple valid p-value 

for the recommended truncated SPRT boundary. We explore the use of these methods in a 

practical example and provide the MChtest R package to perform the methods. 

Keywords: Bootstrap, B-value, Permutation, Resampling Risk, Sequential Design, Se­

quential Probability Ratio Test 

Introduction 

This paper is concerned with designing Monte Carlo implementation of hypothesis tests. 

Common examples of such tests are bootstrap or permutation tests. We focus on general 

hypothesis tests without imposing any special structure on the hypothesis except the very 

minimal requirement that it is straightforward to create the Monte Carlo replicates under the 

null hypothesis. Thus, for example, we do not require either special data structures needed 

to perform network algorithms (see, e.g., Agresti, 1992) nor knowledge of a reasonable 

importance sampling function needed to perform importance sampling (see, e.g., Mehta, 

Patel, and Senchaudhuri, 1988, or Efron and Tibshirani, 1993). 
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Let any Monte Carlo implementation of a hypothesis test be called an MC test. When 

using an MC test with a fixed number of Monte Carlo replications, often one will know with 

high probability, before completing all replications, whether the test will be significant or 

not. Thus, it makes sense to explore sequential procedures in this situation. In this paper 

we propose using a truncated sequential probability ratio test (SPRT) for MC tests. This 

is simply the usual SPRT except we define a bound on the number of replications instead 

of allowing an infinite number. 

For estimating a p-value from an MC test, we show that the simple maximum likelihood 

estimate or the more complicated unbiased estimate (Girshick, Mosteller, and Savage, 1946), 

are not necessarily the best estimators since they do not produce valid p-values. We show 

how for any finite MC test (i.e., one with a predetermined maximum number of replications) 

we can calculate a valid p-value. The method depends on the calculation of the number 

of ways to reach each point on the stopping boundary of the MC test, and we present an 

algorithm to aid in the speed of that calculation for the truncated SPRT boundary. 

Fay and Follmann (2002) explored MC tests and defined the resampling risk as the 

probability that the accept/reject decision will be different from a theoretical MC test 

with an infinite number of replications. Here we show that based on Wald’s (1947) power 

approximation there exists a class of SPRT tests which are minimax with respect to the 

resampling risk. This improves upon Lock (1991) who explored the SPRT for use in MC 

tests but made recommendations for SPRT’s which were not minimax. Then we propose 

truncating the chosen SPRT to prevent the possibility of a very large replication number 

for the MC test. For a similar truncated SPRT, Armitage (1958) has outlined a method for 

calculating exact confidence intervals for the p-value, and here we show how our algorithm 

is used in that situation also. 

The paper is organized as follows. In Section 2 we present the problem and introduce 

notation. We review the SPRT in Section 3 and some results for finite stopping boundaries in 

Section 4. In Section 5 we discuss validity of the p-values from the MC test. In Section 6 we 

discuss the resampling risk and show that a certain class of SPRT boundaries are minimax 
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with respect to the resampling risk. We compare truncated SPRT (tSPRT) boundaries with 

the associated fixed boundary having the same maximum resample size and recommend a 

specific tSPRT boundary when the significance level is 0.05. In Section 7 we show the lack of 

validity of some simple p-value estimators when used with truncated SPRT boundaries and 

propose a simple valid p-value for use with the recommended tSPRT boundary. In Section 8 

we compare the use of a truncated SPRT boundary and a fixed resample size boundary in 

some examples. We explore the timings and p-values from both methods. In Section 9 we 

discuss some additional issues related to MC tests. 

Estimating P-values by Monte Carlo Simulation 

Consider a test statistic, T , for which larger values indicate more unlikely values under the 

null hypothesis. Let T0 = T (d0) denote the value of the test statistic applied to the original 

data, d0. The Monte Carlo test may be represented as taking repeated independent repli­

cations from the data (e.g., bootstrap resamples, or permutation resamples), say d1, d2, . . . , 

and obtaining T1 = T (d1), T2 = T (d2), . . .. Under this Monte Carlo scheme the Ti are inde­

pendent and identically distributed (iid) random variables from some distribution such that 

Pr[Ti ≥ T0|d0] = p(d0) for all i, where the p(d0) is the p-value that would be obtained if an 

infinite Monte Carlo sample or a complete enumeration was taken. So our problem may be 

reduced to the familiar problem of estimating a Bernoulli parameter p ≡ p(d0), from many 

iid binary random variables Xi = I(Ti ≥ T0), where I(A) is the indicator of an event A. Let 

Sn = 
�n 

Xi. Then Xi has a Bernoulli distribution with success probability of p for each i=1 

i, and Sn has a binomial distribution with parameters n and p for a fixed n. However, we 

are interested in more general stopping rules to achieve a more efficient decision, and allow 

the number of Monte Carlo samples, N , to be a random variable. 

We want to satisfy two properties of an estimator of p. First, we want the estimator 

to produce a valid p-value for the Monte Carlo test. Second, we want to minimize in some 

way both the probability that we conclude that p > α when p ≤ α and the probability 

that we conclude that p ≤ α when p > α, where α is the significance level of the Monte 
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Carlo test. Before discussing these two properties in Sections 5 and 6 we review SPRT 

stopping boundaries in Section 3 and finite stopping boundaries (i.e., boundaries with a 

known maximum possible resample size) in Section 4. 

Review of the Sequential Probability Ratio Test 

Consider the sequential probability ratio test. We formulate the MC test problem in terms 

of a hypothesis test: H0 : p > α versus Ha : p ≤ α. Note that the equality is in the 

alternative, since traditionally we reject in an MC test when p = α. This is a composite 

hypothesis, and the classical solution (Wald, 1947) is to transform the problem to testing 

between two simple hypotheses based on two parameters pa < α < p0, and then perform the 

associated SPRT. Let λN be the likelihood ratio after N observations. The SPRT requires 

choosing constants A and B such that we stop the first time either λN ≤ B (in which case 

we accept H0 : p = p0) or λN ≥ A (in which case we reject H0). Equivalently, the SPRT 

says to stop the first time either 

SN ≥ C1 + NC0, 

(then accept H0 : p = p0) or 

SN ≤ C2 + NC0, 

(then reject H0) where C0 = log 
� 

1−p0 

� 
/ log (r), C1 = log (B) / log (r), C2 = log (A) / log (r),1−pa 

and r = {pa(1 − p0)} / {p0(1 − pa)}. Note that the SPRT is overparametrized in the sense 

that there are 4 parameters p0, pa, A and B, but the SPRT can be defined by 3 parameters 

C0, C1, and C2. In other words, we can define equivalent SPRT for different pairs of p0 

and pa by changing A and B accordingly as long as C0 remains fixed. For example, the 

following pairs of (p0, pa) all give C0 = 0.05: (.061, .040), (.077, .030), and (.099, .020). We 

show contours of potentially equivalent SPRT in Figure 1. 

The SPRT minimizes the expected sample size both under the null, p = p0, and the 

alternative, p = pa, among tests with the same size and power for testing between those two 

simple point hypotheses (see e.g., Siegmund, 1985). Wald (1947) has shown that in order 
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to approximately bound the type I error (conclude p = pa when in fact p = p0) at some 

nominal level, say α0, and the type II error (conclude p = p0 when in fact p = pa) at some 

nominal level, say β0, then one should use A = (1 − β0)/α0 and B = β0/(1 − α0). These 

approximate boundaries are called the Wald boundaries (see e.g., Eisenberg and Ghosh, 

1991). Note that α0 (the nominal level for the type I error of null hypothesis H0 : p = p0 

from the SPRT) is different from α (the significance level of the MC test). 

Wald (1947) gave approximation methods for estimating the power function at any p and 

the expected [re]sample size. We reproduce those approximations and use them in Section 6. 

Finite Stopping Boundaries 

Now consider finite stopping rules which may be represented by the stopping boundary 

denoted by a b × 2 matrix, 
⎡ 

S1 N1 
⎤ 

S2 N2 
B = . . . . . 

⎢⎢⎢
. . 

⎥⎥⎥⎣ ⎦
Sb Nb 

We continue with the Monte Carlo resampling (creating S1, S2, . . .) until N = Nj and 

SN = Sj for some j, at which time the Monte Carlo simulation is stopped. We consider 

only boundaries for which when resampling is done as described above, the probability of 

stopping on the boundary is one for any p. Following Girshick, Mosteller, and Savage (1946) 

we call such boundaries closed. Further, we write the boundaries minimally, such that for 

any 0 < p < 1 the probability of stopping at any boundary point is greater than 0. 

Figure 2 shows two finite boundaries. The boundary depicted by the dotted line repre­

sents the boundary of Besag and Clifford (1991) where we stop if SN = smax or if N = nmax. 

The boundary depicted by the solid line is the focus of this paper, the truncated sequen­

tial probability ratio test boundary. In that case most values of Nj on B are not unique, 

appearing on both the “upper” and the “lower” boundaries. The decision at any stopping 

point will be based on the estimated p-value at that point, and we discuss p-value estimation 

later. 
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Let (SN , N ) be a random variable representing the final value of the Monte Carlo resam­

pling associated with the finite boundary, B, and a p-value, p. We can write the probability 

distribution of (SN , N) as 

fj (p, B) ≡ Pr[SN = Sj , N = Nj ; p, B] = Kj (B)p Sj (1 − p)Nj −Sj (1) 

where Kj (B) is the number of possible ways to reach (Sj , Nj ) under B. 

In this situation, the simplest estimator of p is the maximum likelihood estimator (MLE), 

p̂MLE (SN , N) = SN /N ; however, the MLE is biased. Girshick, Mosteller, and Savage (1946, 

Theorem 7) showed that the unique unbiased estimator of p for all the boundaries considered 

in this paper (i.e., boundaries that are finite and simple, where simple in this case means 

that for each n the set of possible values of Sn which denote continued resampling must be 

a set of consecutive integers) is 

(1)
Kj (B) 

p̂U (Sj , Nj ) = 
Kj (B) 

(1)where Kj (B) is the number of possible ways to get from the point (1, 1) to reach (Sj , Nj ), 

and recall Kj (B) is the number of ways to get from (0, 0) to (Sj , Nj ). Once we have an 

estimator of p and a boundary it is conceptually straightforward (although computationally 

difficult) to calculate the exact confidence limits associated with that estimator (Armitage, 

1958, see also Jennison and Turnbull, 2000, pp. 181-183). Let p̂(SN , N ; B) be an estimator 

of p, such as p̂MLE , whose cumulative distribution function associated with the boundary 

evaluated at any fixed value q ∈ (0, 1) (i.e., Pr[p̂(SN , N) ≤ q; p, B]) is monotonically de­

creasing in p. Then the associated 100(1 − γ) percent exact confidence limits for p at the 

point (s, n) under the boundary B, are the values pL(s, n) and pU (s, n) which solve 

Pr[p̂(SN , N) ≥ p̂(s, n); p = pL(s, n), B] = γ/2 

and 

Pr[p̂(SN , N) ≤ p̂(s, n); p = pU (s, n), B] = γ/2. 

The hardest part in finding the confidence limits is the calculation of Kj (B), and an al­

gorithm for doing that calculation is provided in the Appendix. Similar algorithms for 
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calculating probabilities were done by Schultz, et al (1973) (see Jennison and Turnbull, 

2000, pp. 236-237). 

Validity 

Consider the validity of the p-value as estimated by the MC test. Let p̂(SN , N ; B) be an 

arbitrary estimator of p using B. The most important property we want from our estimator 

of the p-value, say p̂, is not that it is the MLE or that it is unbiased but that it is valid. 

We say a p-value estimator is valid if when we use it in the usual way such that we reject 

at a level γ when p̂ ≤ γ, it creates an MC test that conserves the type I error at γ for any 

γ ∈ [0, 1]. In other words, following Berger and Boos (1994), p̂ is valid if 

Pr[p̂(SN , N ; B) ≤ t] ≤ t for each t ∈ [0, 1]. (2) 

In our situation the probability is taken under the original null hypothesis of the MC test 

(not the null hypothesis H0 : p > α), so that p is represented by P , a uniformly distributed 

random variable on (0, 1). Note that under the original null hypothesis, the distribution of P 

is often not quite uniform on (0, 1) (for example, when the number of possible values of Ti is 

finite and ties are allowed), but the continuous uniform distribution provides a conservative 

bound (see Fay and Follmann, 2002). Using P ∼ U(0, 1) we obtain a cumulative distribution 

for any proposed estimator p̂(SN , N ; B) as, 

� 1 

Fp̂ (γ) = Pr[p̂(SN , N ; B) ≤ γ] = Pr[p̂(SN , N ; B) ≤ γ|p] dp 
0 

b� 1 

= 
� 

I(p̂(Sj , Nj ; B) ≤ γ)Kj (B)p Sj (1 − p)Nj −Sj dp 
0 j=1 

b

= 
� 

I(p̂(Sj , Nj ; B) ≤ γ)Kj (B)β(Sj + 1, Nj − Sj + 1), (3) 
j=1 

where � 1 s!r! 
β(s + 1, r + 1) = p s(1 − p)r = .

(s + r + 1)! 0 

Note that for any closed boundary the maximum likelihood estimator of p, 

p̂MLE (SN , N) = SN /N , is not a valid p-value because there is a non-zero probability that 

p̂MLE = 0. 
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We can create a valid p-value given only a finite boundary B and an ordering of the 

points in the boundary. The ordering of the boundary points indicates an ordering of the 

preference between the hypotheses, and we define higher order as a higher preference for 

the null hypothesis and lower order as a higher preference for the alternative hypothesis. A 

simple and intuitive ordering is to order the boundary points by the ratio Sj /Nj , since this 

is a simple estimator of the p-value and lower values would indicate a preference for the 

alternative hypothesis. This ordering is the MLE ordering. Although for clinical trials a 

stage-wise ordering may make sense (see Jennison and Turnbull, 2000, Sections 8.4 and 8.5), 

for the boundaries studied in this paper that stage-wise ordering is not appropriate. Other 

orderings mentioned in Jennison and Turnbull (likelihood ratio and score test) give similar, 

if not equivalent, orderings to the MLE ordering, so we only consider the MLE ordering in 

this paper. 

Using the Sj /Nj (i.e., MLE) ordering, we define our valid p-value when Sn is a boundary 

point as p̂v (Sn, n) = Fp̂MLE (Sn/n). Note that p̂v has the same ordering as p̂MLE , where we 

define “the same ordering” as follows: any two estimators p̂1 and p̂2 have the same ordering 

if p̂1(Si, Ni) < p̂1(Sj , Nj ) implies p̂2(Si, Ni) < p̂2(Sj , Nj ). Let p̂ALT be an alternative p-value 

estimator having the same ordering as p̂v and p̂MLE . Then if p̂ALT (Sn, n) < p̂v(Sn, n) for 

some (Sn, n), then p̂ALT is not valid. To show this, first note that since p̂MLE and p̂ALT have 

the same ordering, Pr[p̂ALT (SN , N) ≤ p̂ALT (Sn, n)] = Pr[p̂MLE (SN , N) ≤ p̂MLE (Sn, n)] ≡ 

p̂v(Sn, n). Thus, when p̂ALT (Sn, n) < p̂v (Sn, n) then Pr[p̂ALT (SN , N) ≤ p̂ALT (Sn, n)] = 

p̂v(Sn, n) > p̂ALT (Sn, n), and equation 2 is violated. The definition of p̂v requires calculation 

of the Kj (B) (see equation 3), and hence the algorithm in the Appendix is useful for this 

calculation as well. 

Note that for some boundaries, p̂v(Sj , Nj ) simplifies considerably. For example with a 

fixed boundary (i.e., when Nj = n and Sj = j − 1 for j = 1, . . . , n + 1), then 

j � 
n 

� 
Si!(n − Si)! j Sj + 1 

p̂v(Sj , Nj ) = 
� 

= = . (4)
Si (n + 1)! n + 1 Nj + 1 

i=1 

Another example is the simple sequential boundary of Besag and Clifford (1991) for which 

sampling continues until either SN = smax or N = nmax (see Figure 2). For this boundary 
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it can be shown that p̂v is equal to the p-values derived by Besag and Clifford (1991), 

Sj +1 if Sj < smaxNj +1 

p̂v(Sj , Nj ) = (5) 

⎧
⎪

⎩
⎨
⎪ . 

Sj if Sj = smaxNj 

Besag and Clifford (1991) noted that in order to obtain exactly continuous uniform p-

values, one can subtract from p̂v (Sj , Nj ) the pseudo-random Uniform value, Uj , defined as 

continuous uniform on [0, p̂v(Sj , Nj ) − p̂v(Sj−1, Nj−1)], where here we order the stopping 

boundary such that p̂v(S1, N1) < p̂v(S2, N2) < · · · < p̂v(Sb, Nb) and define p̂v(S0, N0) ≡ 0. 

For simplicity, we do not explore subtracting pseudo-random Uniform values in this paper. 

Resampling Risk 

We now discuss the task of minimizing in some way both the probability that we conclude 

that p > α when p ≤ α and the probability that we conclude that p ≤ α when p > α. 

Closely following Fay and Follmann (2002) define the resampling risk at p associated with 

the null hypothesis H0 : p > α as 

RRα(p) = 

⎧
⎨ 

⎩ 

Pr[Reject H0] if p > α 

Pr[Accept H0] if p ≤ α 

= P ow(p)I(p > α) + {1 − P ow(p)} I(p ≤ α), 

where P ow(p) = Pr[Reject H0|p]. Note that RRα(p) is the probability of making the 

wrong accept/reject decision given p. 

When P ow(p) is a continuous decreasing function of p, then by inspection of the defini­

tion of RRα(p), we see that RRα(p) is increasing for p ∈ [0, α] and decreasing for p ∈ (α, 1]. 

Consider 3 types of (continuous decreasing) power functions: 

1. power functions where P ow(α) < .5, 

2. power functions where P ow(α) > .5, and 

3. power functions where P ow(α) = .5. 
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For the first type, RRα(p) is maximized at p = α and the maximum is > .5, and for the 

second type, RRα(p) has its supremum at p just after α and this supremum is also > .5, 

and for the third type, the maximum is at p = α and is .5. Thus, for minimax estimators 

we want power functions of the third type, where P ow(α) = .5. That is the strategy we use 

in the next subsection. 

In Section 6.1 we work with a (non-truncated) SPRT where the rejection regions are 

defined by the two different boundaries, while in Section 6.2 we work with a truncated 

SPRT and use the valid p-values as described in Section 5 to define the rejection regions 

(i.e., p̂v ≤ α denotes reject the MC test null). 

6.1 Using the SPRT 

In this section we use the resampling risk function and Wald’s (1947) power approximation 

for the SPRT and show that if that approximation were exact, we can find a class of minimax 

estimators (see e.g., Lehmann, 1983) among the SPRT estimators. 

First we give Wald’s power approximation. Let A = (1 − β0)/α0 and B = β0/(1 − α0), 

and recall that p0 and pa are the values of p under the simple null and simple alternative 

of the SPRT, with pa < α < p0. Although there is no closed form expression of the power 

approximation, it may be written as a function of a nuisance parameter, h. For any h = 0 �

then the power approximation at p(h) is P ow(p(h)), where 

1 − 
� 

1−pa 

�h 

p(h) = 
1−p0 � 

pa 

�h 
− 

� 
1−pa 

�h 

p0 1−p0 

and 

Ah − 1 1 − Bh 

P ow(p(h)) = 1 − = (6)
Ah − Bh Ah − Bh 

Further, taking limits as h → 0 Wald showed that 

log 
� 

1−p0 

� 

p(0) ≡ lim p(h) = 
1−pa 

h→0 log 
� 

pa 

� 
− log 

� 
1−pa 

� 

p0 1−p0 

and 

log (A) |log (B)|
P ow(p(0)) = 1 − = (7)

log (A) + |log (B)| |log (B)| + log (A) 
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Note from Section 3 that p(0) = C0, where C0 is the slope of both stopping lines of the 

SPRT. 

Now P ow(p), of equations 6 and 7, is a continuous decreasing function of p (see e.g., 

Wald, 1947), where P ow(0) = 1 and P ow(1) = 0. Thus, we want to choose from the class 

of SPRT estimators for which P ow(α) = .5. This class is too large so we restrict ourselves 

even further to SPRT with α0 = β0 < .5. In this case, by equation 7, P ow(p) = .5 at p(0). 

Thus, we want p(0) = α, or 

log 
� 

1−p0 

� 

α = C0 = 
1−pa (8) 

log 
� 

pa 

� 
− log 

� 
1−pa 

� 

p0 1−p0 

Thus, for example, when α = 0.05 then SPRT estimators using any of the values of p0 and 

pa on the contour with C0 = 0.05 of Figure 1 will be in the class of minimax estimators. 

Lock (1991) explored the use of the SPRT for Monte Carlo testing and recommended 

using p0 = α + δ and pa = α − δ for some small δ and using B = 1/A for “fairly small” A. 

This recommendation is reasonable but does not meet the minimax property of the RRα(p) 

(unless α = 0.5 which will not occur in practice). Note that the Lock (1991) recommended 

parameters are not far from the minimax. For example, with α = .05, δ = .01, A = 1/20 

and B = 20 we get that the maximum RR.05 using Wald’s approximation is .547, which 

is slightly larger than the .5 that can be obtained using p0 and pa that solve (8). When 

δ = .001 and keeping the other parameters the same, then the maximum RR.05 is .505. 

Nevertheless, since the proposed method of using SPRT’s that satisfy (8) is slightly better, 

we only consider that method in this paper. 

When picking the values of A and B (or α0 and β0 for the Wald boundaries), we have 

a tradeoff between smaller resampling risk and larger expected resample size, E(N). The 

expected resample size at p is E(N ; p) and can be approximated by (see Wald, 1947, p. 99) 

(1 − P ow(p)) log(B) + P ow(p) log(A)
E(N ; p) = . 

p log 
� 

p1 

� 
+ (1 − p) log 

� 
1−p1 

� 

p0 1−p0 

We see this tradeoff in Figures 3, where we plot the resampling risk at p (i.e., RRα(p)) and 

E(N ; p) for some different SPRT tests in the minimax class. Note that the RRα(.05) = .5 

11 



for all members of this class. Also, the SPRT with the largest E(N) also have the smallest 

RR. 

6.2 Using a Truncated SPRT 

In practice, we use a predetermined maximum N , say m. A simple truncation would be to 

use a SPRT except stop when N = m. We create a slight modification of this truncation 

by stopping at the curtailed boundary associated with m. In other words, we stop as 

soon as we either cross the SPRT boundary or the boundary with SN ≥ α(m + 1) or 

N − SN ≥ (1 − α)(m + 1). In this paper we will only explore this second type of truncated 

SPRT (or tSPRT). The details of the algorithm used to calculate the Kj values are given 

in the Appendix. 

In Figures 4 we plot RR.05(p) by p and E(N |p) by p for the fixed boundary with m = 9999 

and several truncated SPRT boundaries with m = 9999, pa = .04, and p0 = 0.0614 (giving 

C0 = .05). These calculations are based on using valid p-values as described in Section 5 

and both RR.05(p) and E(N |p) are exact, calculated using the Kj values from the algorithm 

in the Appendix. We see that the fixed boundary has the lowest resampling risk and the 

highest E(N). Notice we have a similar tradeoff as with the SPRT boundaries, as α0 and β0 

get smaller the boundary widens (i.e., imagining the tSPRT boundary as a pencil shape [see 

Figure 2], the thickness of the pencil increases as α0 and β0 get smaller) and the resampling 

risk decreases while the E(N) increases. Note that RR.05(p) can be larger than .5 and 

slightly asymmetrical; this is due to discreteness and the slightly conservative nature of the 

valid p-values, p̂v. 

In the above we have held m constant, but we can also increase m, which will decrease 

the resampling risk and increase the E(N). But recall from Figure 3a that even with infinite 

m (i.e., a SPRT), the decrease in resampling risk is slight when going from α0 = β0 = .001 

to α0 = β0 = .0001, so we expect that further reductions in α0 and β0 will not result in 

much reduction in RRα per added E(N). Thus, we recommended the tSPRT boundary with 

α0 = β0 = .0001 and m = 9999 as a practical boundary for testing α = .05. In Figure 5 
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we show for this recommended boundary how the confidence intervals for the p-values are 

tightest close to p̂v = 0.05. 

Are the Simple P-value Estimators Valid? 

We have already shown the p̂MLE is not valid for any finite boundary. Since we have the 

software and algorithm to calculate the Kj values, we can calculate p̂v; we can then try to 

find simple estimators of p similar to (4) and (5) that are valid. 

Consider the tSPRT with m = 9999, pa = 0.0400, p0 = .0614, and α0 = β0 = .0001. 

This is equivalent to the tSPRT with m = 9999 and either pa = 0.0466, p0 = .0535 and 

α0 = β0 = .05; or pa = 0.0490, p0 = .0510 and α0 = β0 = .3. We consider two simple 

estimators, p̂MLE (SN , N) = SN /N and p̃(SN , N) = (SN + 1)/(N + 1). In Figure 6a we plot 

p̂MLE − p̂v vs. p̂v, and in Figure 6b we plot p̃ − p̂v vs. p̂v. We see that since both simple 

estimators drop below p̂v for low p-values, and since for low p-values all three estimators 

have the same ordering, following the argument in Section 5, p̂ and p̃ are not valid. Notice 

that p̃ is closer to p̂v for small p̂v while p̂MLE is closer to p̂v for larger p̂v. This is similar to 

the boundary of Besag and Clifford (1991) which has p̂v equal to p̂MLE for larger p-values 

and p̃ for smaller p-values. 

We propose a simple ad hoc estimator for p-values from this tSPRT boundary. Let 

SN (1+α/2)+1⎧ 
if (SN − C2)/N ≤ αN +1 

.04997 if N − SN = max(Nj − Sj ) 

⎪⎪⎪⎪⎪⎪⎪⎪
p̂A = 

⎨ 
(9) 

SN +1 if SN = max(Sj ) and (SN − C1)/N < αN +1

⎪⎪⎪⎪⎪⎪⎪⎪
SN if (SN − C1)/N ≥ α

⎩ 
N 

For the boundary of Figure 6c, p̂A is valid since we can check every point in the boundary 

and show that p̂A > p̂v . For example, when N − SN = max(Nj − Sj ) then p̂v(SN , N) ∈ 

(.04910, .04997), so defining all p̂A values as .04997 for those (SN , N) values produces valid 

p-values. The utility of p̂A is that it may be calculated without first calculating the Kj 

values. Note that p̂A produces a valid p-value for only this one tSPRT boundary. It is 

an unsolved problem to define simple valid p-values for all tSPRT boundaries, although, as 
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previously described, valid p-values may be calculated using the algorithm of the Appendix. 

Application and Timings 

Before applying the MC test with the tSPRT boundary to example data sets, there is some 

computation time that is required to set up the boundary. For example, on a personal 

computer with a Xeon 3.00GHz CPU with 3.5 GB of RAM, it took 73 minutes to calculate 

the tSPRT boundary with m = 9999, pa = .04, p0 = .0614, and α0 = β0 = .0001. This 

includes the time it took to calculate the 99% confidence intervals for each p-value. We call 

this boundary the default tSPRT boundary. Note, once that boundary is created and saved, 

then we can save computational time on a specific application of a MC test. 

Now consider the application which motivated this research. Kim, et al (2000) developed 

a permutation test to see if there are significant changes in trend in cancer rates. Here we 

present the most basic application of the method. Figure 7 presents the standardized cancer 

incidence rates for all races and both sexes on a subset of the U.S. for either (a) brain and 

other nervous system cancer, (b) bones and joints cancer, or (c) eye and orbit cancer (SEER, 

2006). For each type of cancer we plot a linear model, and the best joinpoint model (also 

called segmented line regression, or piecewise linear regression) with one joinpoint and joins 

allowed only on the years. We wish to test whether the joinpoint model fits significantly 

better than the linear model. To do this we perform an MC test, where the T0 and T1, T2, . . . 

are defined as follows: 

1. Start with the observed data, letting d = d0. 

2. Calculate T (d) as follows: 

•	 Fit the linear regression model on d. 

•	 Do a grid search for the best joinpoint regression model on d with one joinpoint 

in terms of minimizing the sum of squares error (SSE), where joins are allowed 

only at the years (1976,1977,...,2002). 
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• Calculate the statistic, T (d) equal to the SSE for the linear model over the SSE 

for the best joinpoint model on d. 

3. Sequentially create permutation data sets by taking the predicted rates from the linear 

model on d0, and adding the permuted residuals from the linear model also from d0. 

Let these permutation data sets be denoted d1, d2, . . . . 

4. Sequentially calculate T (d1), T (d2), . . . following Step 2. 

Notice that this MC test requires a grid search for each permutation. 

When we apply the MC test on the brain and other nervous system cancer rates using 

a fixed MC boundary with m = 9999 we get a p-value of p = 0.0001 with 99% confidence 

intervals on the p-value (0.00000, 0.00053). This took 24.6 minutes on the computer de­

scribed above programmed in R. For this example, no attempt was made to optimize the 

computer code, since the timings will only be used to relatively compare the fixed boundary 

to the tSPRT boundary, and faster code, written in C++ with a graphical user interface, 

is freely available (Joinpoint, 2005). For the default tSPRT boundary, using the same ran­

dom seed we get a p-value of p = 0.00244 with 99% confidence intervals on the p-value 

(0.00000, 0.01290). This took 1.0 minutes on the same computer (using precalculated Kj 

values and confidence intervals). Now apply the MC test on the bones and joints cancer 

rates. For the fixed MC boundary with m = 9999, we get a p-value of p = 0.308 with 99% 

confidence intervals on the p-value (0.296, 0.320), and it takes 24.6 minutes. For the default 

tSPRT boundary, using the same random seed we get a p-value of p = 0.369 with 99% con­

fidence intervals on the p-value (0.222, 0.528). This took 9.8 seconds on the same computer. 

Applying the MC test on the eye and orbit cancer, it took 24.7 minutes to get a p-value of 

p = .0555 with 99% confidence intervals (0.0497, 0.0616) using the fixed MC boundary with 

m = 9999, and it took 3.6 minutes to get a p-value of 0.0634 with 99% confidence interval 

(0.0475, 0.0814) using the default tSPRT boundary. In all cases using the tSPRT boundary 

resulted in a savings in terms of time (not counting the set-up time) at the cost of precision 

on the p-value. In the third example there was less difference between the fixed and tSPRT 
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results because the p-value was closer to 0.05. 

The advantage of the tSPRT boundary over the fixed type boundary is apparent when 

each application of the test statistic is not trivially short. Then the tSPRT boundary 

automatically adjusts to take few replications when the p-value is far from α giving fairly 

large confidence intervals on the p-value, but takes many replications when the p-value 

is close to α giving relatively tight confidence intervals. Thus, for example, the tSPRT 

boundary is very practical for applying the joinpoint tests repeatedly to many different 

types of cancer rates. 

Discussion 

We have explored the use of truncated sequential probability ratio test (tSPRT) boundaries 

with MC tests. We related the p-value from an MC test to some classical results on se­

quentially testing of a binomial parameter, and provided an algorithm useful for calculating 

many of those results. Using that algorithm, we have shown how to calculate valid p-values 

and confidence intervals about those p-values. We have shown the form of a minimax SPRT 

boundary with respect to the resampling risk for α (RRα). Among that class of minimax 

boundaries, we have shown (at least with resample sizes around 104 for α = 0.05) that a 

reasonable tSPRT uses pa = 0.04 and α0 = β0 = 0.0001 for the Wald parameters. Other 

reasonable tSPRT boundaries may have α0 �= β0, and we leave the exploration of the relative 

size of those parameters for future research. 

There are other methods that may be used to decide among the tSPRT boundaries from 

within the minimax class even with α0 = β0 (or equivalently (C1 = −C2). Here we mention 

three. First one could choose C1 = −C2 such that the minimum possible p-value is less than 

some value, pmin. Note that the minimum p-value for the tSPRT boundary occurs when 

Sj = 0. Let that point be (Sb = 0, Nb). Then p̂v(0, Nb) = 1/(Nb + 1) and Nb = �−C2/α�, 

where �x� is the smallest integer greater than or equal to x. For the default tSPRT (i.e., 

with parameters m = 9999, pa = .04, p0 = .0614, and α0 = β0 = .0001) we have that 

Nb = 408 and the minimum p-value is p = 0.0024. 
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A second method for choosing tSPRT parameters was suggested by the associate editor. 

Let mf be the resample size for a fixed boundary that gives an acceptable width confidence 

interval at p̂ = .05. Set m for the tSPRT boundary at some multiple of mf , say m = 1.5mf , 

then solve for α0 = β0 so that the tSPRT confidence interval at p̂ ≈ .05 has approximately 

the same width as the fixed boundary with mf . 

Finally, another way to choose an MC boundary, is to minimize the resampling risk 

among a set of distributions for the p-value as proposed by Fay and Follmann (2002). We 

briefly outline that approach, which adds an extra level of abstraction. Note from Figure 4a 

that the resampling risk varies widely throughout p. It would be nice to summarize RRα(p) 

by taking the mean over all p. To do this we assume a distribution for the p-value. Let 

P be a random variable for the p-value, whose distribution is induced by the test statistic 

and the data. Define the random variable Z = g {T (D0)}, where D0 is a random variable 

representing the original data, and g(·) is an unknown monotonic function. Note that Z 

is a random variable, whose randomness comes from the data, while in much of paper, the 

original data, d0, was treated as fixed and the only randomness came from the Monte Carlo 

resamplings. Suppose there exists some g(·) (possibly the identity function) such that under 

the null Z ∼ N(0, 1) and under the alternative Z ∼ N(µ, 1). We can rewrite µ in terms of 

α and the power of the test, 1 − β, as µ = Φ−1(1 − α) − Φ−1(β). Because of the central 

limit theorem many common test statistics induce random variables Z of this form. Then 

the distribution of the p-value under the alternative is FP (x; µ) = 1 − Φ 
�
Φ−1 (1 − x) − µ

�
. 

Fay and Follmann (2002) defined the resampling risk in terms of distributions for P as 

RRα(FP ) = 
� 

RRα(p)dFP (p). They estimated FP with beta distributions, F̂P , then looked 

for the F̂P which gave the largest RRα(F̂P ) for fixed boundaries of different sizes over all 

possible values of β. They found through a numeric search that 1 − β equal to about .47 

gave the largest RR0.05(F̂P ) for fixed boundaries. We have found through numeric search 

that 1 − β = .47 also gave the largest RRα(F̂P ) for fixed boundaries when α = 0.01. Let 

ˆ∗the distribution associated with 1 − β = .47 be F . Thus, another method for choosing 

tSPRT would be to choose a maximum allowable RRα(F̂ ∗), say γ, then either (1) fix a 
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suitable α0 and β0 and increase m until RRα(F̂ ∗) < γ, or (2) fix a suitable m and decrease 

α0 = β0 until RRα(F̂ ∗) < γ. The term suitable applied to the fixed parameters above 

denotes that RRα(F̂ ∗) < γ is possible by changing the other parameter(s). Note that 

RRα(F̂ ∗) = 0.0041 for the recommended tSPRT boundary with m = 9999, p0 = .04, 

p1 = 0.0614, and α0 = β0 = 0.0001. 

We have not discussed other classes of boundaries such as the IPO boundary recom­

mended by Fay and Follmann (2002) for bounding RRα(F̂ ∗). We simply note that the IPO 

boundary is intractable for values of RRα(F̂ ∗) smaller than 0.01, and in cases we studied 

where it is tractable, the IPO performs similarly to tSPRT boundaries (results not shown). 

Note that there have recently been many advances in group sequential methods especially 

for use in monitoring clinical trials (see Jennison and Turnbull, 2000, and Proschan, Lan, 

and Wittes, 2006). We briefly show how these methods relate to the truncated SPRT. For 

group sequential methods, we specify a sample size for the certain end of the trial then 

specify either (1) how many looks at the data will be taken and which monitoring procedure 

will be used or (2) how the type I error will be spent by picking a spending function. To 

study both approaches for the MC test situation we first write the tSPRT as a B-value (Lan 

and Wittes, 1988). Suppose that we specify that the trial will continue until at most m 

observations and each observation is binary. Let Zm be the statistic for testing whether 

p = α or not given a sampling of m observations: 

Sm − mα 
Zm = �

mα(1 − α) 

Similarly we can define ZN after N observations. At the Nth observation, we are 
�

N/m 

of the way through the trial in terms of information. The B-value at the trial fraction 

t = 
�

N/m is, 
�� 

N 
� � 

N SN − Nα 
B = ZN = 

m m 
�

mα(1 − α) 

If we are taking an fixed number of equidistant looks at the data, at say t1 = 
�

n1/m, t2 = 
�

n2/m, . . . , tk = 1, then using the standard recommended O’Brien-Fleming procedure we 

stop before tk = 1 if either B(ti) ≥ C∗ or B(ti) ≤ C∗ for any i < k, or equivalently at 1 2 
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ni = N < m stop if 

SN ≥ C ∗
�

mα(1 − α) + Nα 1 

or if 

SN ≤ C2 
∗�mα(1 − α) + Nα. 

With m looks at the data we get the tSPRT minimax boundary that we have proposed. 

There has been some work on optimizing the group sequential methods (see Jennison and 

Turnbull, 2000, p. 357-359 and references there), but the added complexity does not seem 

worthwhile for MC tests where we allow stopping after each replicate. The spending function 

approach mentioned above just adds more flexibility so that the looks do not need to be at 

predetermined times. Unlike a clinical trial were it is logistically difficult to perform many 

analyses on the data as the trial progresses, there is very little extra cost in checking after 

each observation for an MC test. 

Finally, we note that the algorithm listed in the Appendix may be used for calculating 

exact confidence intervals following a tSPRT for a binary response. The estimator of p 

in this case need not be p̂v, and an appropriate estimator may be either the MLE or the 

unbiased estimator (which also uses the algorithm of the Appendix in its calculation). 

An R package called MChtest to perform the methods of this paper is available at CRAN 

(http://cran.r-project.org/). 
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Appendix: Algorithm for Calculating Kj 

Here we present an algorithm for calculating the number of ways to reach the jth boundary 

point, Kj , for a tSPRT design. Modifications to the algorithm may be needed to apply it 

to different designs and are not discussed here. 
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First we define the ordering of the indices of the design. Let Rj = Nj − Sj for all 

j. The first point in the design has S1 = N1 and R1 = 0. The next set of points has 

R2 = 1, R3 = 2, . . . but including only those points with Sj /Nj > α. At Sj /Nj = α we order 

the points by decreasing values of Sj until we reach the last point at Sb = 0. In the following 

let the rows from i to j of B be denoted B[i:j]. 

Now here is the algorithm: 

•	 Start with the smallest curtailed sampling design (see e.g., Fay and Follmann, 2002) 

that is surrounded by the proposed design B. In other words each point on the 

curtailed sampling design is either a member of the proposed boundary, B, or it is 

on the interior of B. Let B(1) denote this curtailed design. Let Rj = Nj − Sj for 

(k)all j, and similarly define Rj . Because it is a curtailed design, every point in this 

(1) (1)	 (1) (1)design has either S = maxi(S ) (the “top” of the design) or R = maxi(R ) (the j i	 j i 

“right” of the design). Then for each point, (s, n), on the top of this curtailed design � 
n − 1 

�
the K-value is K(s, n) = . For each point, (s, n), on the right of the design 

n − s �	 
n − 1 

�
the K-value is . 

s 

to	 B(j+1)•	 Keep iterating from B(j) until B(j+1) = B. Within the iterations we 

define 3 indexes, i1 ≤ i2 ≤ i3. The index i1 = i(j) is the largest index i such that 1 

(j)	 (j)
B = The index i2 = i is the top index for B(j), i.e., i2 is the smallest [1:i] B[1:i].	 2 

(j) (j)	 (j)value of i such that S . The index i3 = i is the smallest index i such that i+1 < Si 3 

B
(

[i

j

:

) 
s(j)] 

= B[(s−s(j)+i):s], where s is the number of rows in B and s(j) is the number 

of rows in B(j). This means that there are s(j) − i3 + 1 rows that match at the end of 

B(j) and B. 

1. Keep moving up the top row until all of the top of B(j+1) equals the beginning 

of the top of B, then go to 2. To move up the top row, do the following: 

–	 Start from the design B(j) with corresponding count vector denoted K(j). 

Let 

(j+1) (j)
B = B[1:i1] [1:i1] 
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(j) (j)
⎡ 

S + 1 N + 1 
⎤

i1+1 i1+1 
(j) (j)

S + 1 N + 1(j+1) i1+2 i1+2
B = [(i1+1):i2] .. .. 

⎢⎢⎢⎢
. . 

⎥⎥⎥⎥⎣ 
(j) (j) 

⎦ 

S + 1 N + 1i2 i2 

(j+1) (j) (j) 
i2+1B = 

� 
S N + 1 

� 

i2 i2 

and 

(j+1) (j)
B = B

[(i2+2):(s(j)+1)] [(i2 +1):s(j)] 

Then K(j+1) is equal to 

(j+1) (j)
K = K[1:i1] [1:i1] 

(j)
⎡ 

K
⎤

i1�i1+1 (j)
K

(j+1) i=i1 i 
K = [i1 :i2] . . 

⎢⎢⎢⎢
. 

⎥⎥⎥⎥⎣ �i2 (j) 
⎦ 

Ki=i1 i � 
i2

�
(j+1) (j)

K = 
� 

K[(i2 +1):(i2+1)] i 
i=i1 

(j+1) (j)
K = K

[(i2+2):(s(j)+1)] [(i2+1):s(j)] 

2. Keep moving right the right hand-side of the design until all of the right of B(j+1) 

equals the end of the right of B, if B(j+1) �= B go to 1. To move over the right 

of the design, do the following: 

– Start from the design B(j) with corresponding count vector denoted K(j). 

We want to move the portion of the right hand side of B(j) that is not already 

equal (i.e., B(j) ) over 1 position to the right. Then[(i2+1):(i3−1)]

(j+1) (j)
B = B[1:i2 ] [1:i2] 

(j+1) (j) (j)B = 
� 

S N + 1 
� 

[(i2+1):(i2+1)] i2 i2 

(j) (j)
⎡ 

S N + 1 
⎤

i2+1 i2+1 
(j) (j)

S N + 1(j+1) i2+2 i2+2 
B = [(i2+2):i3] .. .. 

⎢⎢⎢⎢
. . 

⎥⎥⎥⎥⎣ 
(j) (j) 

⎦ 

S N + 1i3−1 i3−1 

and 

(j+1) (j)
B = B

[(i3+1):(s(j)+1)] [i3:s(j)] 
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Then K(j+1) is 

(j+1) (j)
K = K[1:i2] [1:i2] � 

i3−1
�

(j+1) (j)
K = 

� 
K[(i2+1):(i2 +1)] i 

i=i2+1 

(j)
⎡ �i3−1 

K
⎤

i=i2+1 i �i3−1 (j)
K(j+1) i=i2+2 i 

K = [(i2+2):i3 ] .. 

⎢⎢⎢⎢
. 

⎥⎥⎥⎥⎣ �i3 −1 (j) 
⎦ 

Ki=i3−1 i 

and 

(j+1) (j)
K = K

[(i3 +1):(s(j) +1)] [i3:s(j)] 

To avoid overflow, we do not store the Kj values, but instead store 

K ∗ = Kj β(Sj + 1, Rj + 1).j 
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Figure 1: Contours of values of p0 and pa with equivalent values of C0. 
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Figure 2: Plot of two stopping boundaries: truncated sequential probability ratio test 
(tSPRT) boundary with m = 9999, pa = .04 and p0 = .0614 (so that C0 = .05) using 
the Wald boundaries with α0 = β0 = .0001 (solid black), and Besag and Clifford (1991) 
boundary with smax = 499 and nmax = 9999 (dotted gray). 
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Figure 3: Properties of SPRT with pa = .04 and p0 = .0614 (so that C0 = .05) using 
the Wald boundaries with α0 and β0 both equal to either 0.1, 0.01, 0.001 or 0.0001 (this 
corresponds to the parametrizations with C1 = −C2 equal to either 4.862, 10.168, 15.283 or 
20.380 respectively). Figure 3a is resampling risk and Figure 3b is E(N), where both are 
calculated using Wald’s (1947) approximations. 
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Figure 4: Properties of truncated SPRT with m = 9999, pa = .04 and p0 = .0614 
(so that C0 = .05) using the Wald boundaries with α0 and β0 both equal to either 
0.1, 0.01, 0.001, or 0.0001 (this corresponds to the parametrizations with C1 = −C2 equal 
to either 4.862, 10.168, 15.283 or 20.380 respectively). Figure 4a is RR.05(p) and Figure 4b 
is E(N), where both are exact and calculated using the algorithm in the appendix. 
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Figure 5: Plot of p̂v vs. each of the 99% confidence limits minus p̂v for the default tSPRT 
boundary with m = 9999, pa = .04 and p0 = .0614 (so that C0 = .05) using the Wald 
boundaries with α0 = β0 = .0001. 
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Figure 6: Validity of simple p-value estimators for the truncated SPRT with m = 9999, 
pa = .04 and p0 = .0614 with α0 = β0 = .0001. Figure 6a shows SN /N − p̂v vs. p̂v, and 
Figure 6b shows (SN + 1)/(N + 1) − p̂v vs. p̂v. Figure 6c shows p̂A − p̂v vs. p̂v, where p̂A 

is defined by (9). In both Figures 6a and 6b the difference falls below the line at 0, while 
in Figure 6c the difference never falls below 0; therefore, p̂A is the only valid p-value of the 
three. 30 
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Figure 7: Cancer incidence rates, standardized using the US 2000 standard (SEER, 2006). 
Solid line is the best linear fit and dotted line is the best 1-joinpoint fit, with joins allowed 
only exactly at each year. 

31 




