Experimental Influenza Vaccine (FluMos-v2) Study

This is a study of an experimental influenza (flu) vaccine called the FluMos-v2 vaccine. This vaccine study will provide more information about flu vaccines that may one day lead to a universal flu vaccine. A universal flu vaccine would be effective against all influenza strains

Contact Information

Office: Vaccine Evaluation Clinic

Phone: 866-833-LIFE (5433)

Email: vaccines@nih.gov
 

NIAID’s VRC, S. Africa’s Afrigen Kick Off Vaccine-Sharing Efforts

NIAID Now |

NIAID’s VRC, S. Africa’s Afrigen Kick Off Vaccine-Sharing Efforts
Training Aimed at Making mRNA Technology Available Globally 

A team of vaccine production experts from South Africa recently finished training in Maryland as part of a global mRNA vaccine collaboration. The experts are working with scientists at NIAID’s Vaccine Research Center (VRC) to produce vaccines against a list of troubling infectious diseases.

The mRNA vaccine platform, which became commonly used during the COVID-19 pandemic, works by delivering a piece of genetic material to cells that instructs the body to make a protein fragment resembling one from a target pathogen (such as a virus). The immune system then recognizes and remembers the fragment, enabling it to mount a strong response if the body is exposed to that pathogen. The mRNA vaccine production process involves inserting the selected virus protein gene into a plasmid (a circular piece of DNA), the production of which was the topic of the visit from the South African scientists.

The seven-member team from Afrigen Biologics and Vaccines, a biotechnology company based in Cape Town, South Africa, arrived on July 21 for two weeks of collaboration and learning with VRC scientists. They focused on vaccine manufacturing at the VRC’s Vaccine Clinical Materials Program in Frederick, Maryland. Specific aspects included topics such as: inoculum growth, nutrient feeding, quality control, and other steps needed to make an mRNA vaccine. The Afrigen team also met with VRC leadership, including the recently appointed VRC Director, Dr. Ted Pierson. 

The visit represented a significant milestone for an ongoing research collaboration established in March 2022 between NIAID and Afrigen. Their objective is to share knowledge, expertise, and data to expedite mRNA vaccine production globally. As part of the collaboration, NIAID – specifically scientists at the VRC – are making plasmid DNA that will be used for Afrigen’s in vitro transcription process. Additionally, the VRC is providing technology transfer and training on plasmid DNA manufacturing, which the Afrigen group observed during the visit. In turn, Afrigen is sharing knowledge and expertise with NIAID scientists about the in vitro transcription and lipid nanoparticle formulation processes. The mutually beneficial scientific collaboration will advance each institution’s work toward establishing mRNA vaccine production capabilities to support their respective missions.

The World Health Organization, the COVAX Vaccine Manufacturing Taskforce, and the Medicines Patent Pool established a formal agreement in July 2021 to build capacity in low- and middle-income countries to make mRNA vaccines, now known as the mRNA technology transfer programme. Afrigen was chosen as a center of excellence and training, or “technology transfer hub,” as part of the mRNA technology transfer programme. The hub is designed to improve the health and security of member nations by creating sustainable, locally owned mRNA vaccine manufacturing in those nations. Because mRNA vaccines can be cheaper to produce, quickly developed in response to outbreaks, and easily modified when new variants of pathogens emerge, the ability to produce these vaccines in low- and middle-income nations will contribute significantly to global health security.

Afrigen is working to establish mRNA vaccine production technology—initially for a COVID-19 vaccine candidate—and will work with local partners to conduct research to evaluate the vaccines, along with manufacturing the vaccines at scale. The eventual goal is to be able to share this established process with manufacturers across multiple countries. 

Though the effort began with COVID-19 in mind, the scientists are mutually hoping to use the mRNA vaccine platform to develop and test vaccines against an array of infectious diseases found globally, such as HIV, tuberculosis, malaria, influenza, cancer-associated viruses and more.

Afrigen scientists socializing with colleagues at the Vaccine Research Center’s Vaccine Production Program (VPP) and Vaccine Clinical Materials Program (VCMP) in Frederick, Maryland.

Afrigen scientists spent time getting to know colleagues at the Vaccine Research Center’s Vaccine Production Program (VPP) and Vaccine Clinical Materials Program (VCMP), including during a meet-and-greet with VRC leadership and staff at the VCMP pilot plant in Frederick, Maryland.

Credit: NIAID


 

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

IAS 2023—HIV Vaccines, bNAbs, and an Update from NIH’s Office of AIDS Research

NIAID Now |

This blog is cross-posted from HIV.gov. 

On Tuesday at the International AIDS Society’s 12th Conference on HIV Science (IAS 2023), HIV.gov continued our conversations about research highlights, including a focus on the latest about HIV vaccines. We also heard an update from the NIH Office of AIDS Research.

NIH’s Carl Dieffenbach, Ph.D., Director of the Division of AIDS at the National Institute of Allergy and Infectious Diseases (NIAID), spoke with Louis Shackelford, M.P.H., about HIV vaccine studies being discussed at IAS 2023 and potential roles for broadly neutralizing antibodies (or bNAbs). Louis is the Acting Director for External Relations at the NIH-supported HIV Vaccine Trials Network (HVTN) and COVID-19 Prevention Network. Noting it is an exciting time in HIV vaccine research, Carl explained that scientists are exploring how to take what we have learned about bNAbs, which prevented acquisition of some HIV strains, and turn that into an HIV vaccine. In addition, Carl and Louis discussed how bNAbs are being studied for use in HIV treatment and even, possibly, a cure. View their conversation below:

Bill Kapogiannis, M.D., Acting Director of NIH’s Office of AIDS Research (OAR), spoke with Catey Laube, Section Chief for HIV, STIs, Allergy, Immunology, and Transplantation in NIAID’s Office of Communications and Government Relations. OAR coordinates the scientific, budgetary, legislative, and policy components of HIV/AIDS research across NIH’s institutes and centers. Bill discussed the importance of the results from the NIH-supported REPRIEVE trial presented yesterday at the conference. The global study found that statins, a class of cholesterol-lowering medications, may offset the elevated risk of cardiovascular disease experienced by people with HIV by more than a third, potentially preventing one in five major cardiovascular events (e.g., heart attack or stroke) or premature deaths in this population. He noted that these important findings have implications for clinical guidelines for the care of people with HIV. Bill also observed that the findings are relevant to two of OAR’s signature programs: HIV and Aging, since the study population was people with HIV ages 40-75, and HIV and Women, since the results were equally applicable to women. View their conversation below:

IAS 2023, convening in Brisbane, Australia, features the latest advances in basic, clinical, and operational HIV research and seeks to move science into policy and practice. The conference features seven plenary sessions, more than 60 symposia and oral abstract sessions, hundreds of poster sessions, and many satellite sessions featuring highly diverse and cutting-edge research. Many of the studies that are being presented have been conducted by or funded by federal partners, including NIH, CDC, PEPFAR, DoD, and others.

As is the custom in Australia, HIV.gov acknowledges the Jagera and Turrbal people as the Traditional Custodians of Meanjin (Brisbane), the land on which IAS 2023 is taking place. We pay our respects to Jagera and Turrbal elders past, present, and emerging.

Follow all of our conversations from IAS 2023 this week here on the blog as well as on on HIV.gov’s Facebook, Instagram, and Twitter, and on the LinkedIn account of the HHS Office of Infectious Disease and HIV/AIDS Policy.

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Promising Advances for Antibody Treatment of Viruses that Cause Neurologic and Arthritic Diseases

NIAID Now |

NIAID scientists and colleagues are one step closer to developing a safe and effective therapy against alphaviruses with the identification of SKT05, a monoclonal antibody (mAb) derived from macaques vaccinated with virus-like particles (VLPs) representing three encephalitic alphaviruses.

Spread by mosquitos, alphaviruses primarily affect people in one of two ways: causing severe neurological impairment such as encephalitis (brain swelling) or crippling muscle pain similar to arthritis. Western, eastern and Venezuelan equine encephalitis viruses (EEV) are examples of the former, while chikungunya and Ross River viruses are examples of the latter.

Building on studies from the past decade, scientists in NIAID’s Vaccine Research Center and colleagues knew that macaques produce dozens of different protective antibodies when experimentally vaccinated against the EEVs. In a new study published in Cell, the research team identified 109 mAbs in macaques immunized with the experimental western, eastern, and Venezuelan EEV VLP vaccine. All antibodies were individually tested for binding and neutralization against the three EEVs, with the best ones also assessed against arthritogenic alphaviruses not included in the vaccine. Collaborators included scientists from NIAID’s Laboratory of Viral Diseases, USAMRIID’s Virology Division, and Columbia University.

Their work identified SKT05 as the most broadly reactive antibody – remarkably, it also provided protection against both types of alphaviruses, those that cause encephalitis and those that cause arthritic-like disease. High-resolution structural studies further revealed that the way SKT05 binds to alphaviruses could make it resistant to surface changes that can occur in viruses – which means the mAb is likely to have lasting effectiveness.

Further studies are planned to investigate potential clinical development of SKT05. They aim to better define how SKT05 interacts with viruses and whether it can confer protective benefits against additional alphaviruses.

References:
M Sutton et al. Vaccine elicitation and structural basis for antibody protection against alphaviruses. Cell DOI: https://doi.org/10.1016/j.cell.2023.05.019 (2023).

EE Coates, et al. Safety and immunogenicity of a trivalent virus-like particle vaccine against western, eastern, and Venezuelan equine encephalitis viruses: a phase 1, open-label, dose-escalation, randomised clinical trial. Lancet Infectious Diseases (2022).

SY Ko, et al. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Science Translational Medicine (2019).
 

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

NIH Statement on HIV Vaccine Awareness Day 2023

Today marks the 26th observance of HIV Vaccine Awareness Day. The National Institutes of Health applauds the efforts of the collaborative global community of scientists, advocates, study participants, study staff, and funders enabling unprecedented levels of innovation and adaptation in the pursuit of a highly effective HIV vaccine.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Universal Influenza Candidate Vaccine Performs Well in Phase 1 Trial

NIAID Now |

Universal Influenza Candidate Vaccine Performs Well in Phase 1 Trial
mRNA Version of NIAID Vaccine Begins Similar Testing 

Scientists at NIAID’s Vaccine Research Center (VRC) report in two new studies that an experimental influenza vaccine, designed to elicit immunity against a broad range of influenza viruses, performed well in a small trial of volunteers. In fact, the vaccine has advanced to a second trial led by scientists at Duke University through NIAID’s Collaborative Influenza Vaccine Innovation Centers (CIVICs).

In a phase 1 clinical trial of 52 volunteers, the vaccine developed by the VRC – known as H1ssF (influenza H1 hemagglutinin stabilized stem ferritin nanoparticle vaccine) – was safe, well-tolerated, and induced broad antibody responses that target the hemagglutinin stem. The two new studies assessing the nanoparticle vaccine published April 19 in Science Translational Medicine.

Healthy volunteers ages 18-70 enrolled at the NIH’s Clinical Center and were given either a single 20-microgram dose or two 60-microgram vaccine doses. Boosters were given 16 weeks after the initial dose. The trial enrolled between April 1, 2019, and March 9, 2020. 

Trial participants did not experience any severe adverse events; the most common vaccine reactions included mild headache, tenderness at the vaccine site, and temporary general discomfort.

As anticipated based on preclinical study results, H1ssF generated binding antibodies to the stem of the influenza H1 hemagglutinin (HA) protein. Antibody responses were observed regardless of dose or participant age. “These responses were durable, with neutralizing antibodies observed over one year after vaccination,” the authors stated, suggesting this vaccine prototype can advance further universal influenza vaccine development.

The H1ssF vaccine using an mRNA delivery system also began testing in a phase 1 clinical trial being overseen by scientists at the Duke Human Vaccine Institute, a part of NIAID’s CIVICs network. 

HA is composed of head and stem domains and enables the influenza virus to attach and enter a human cell. The immune system can mount an immune response to HA, but most of the response is directed toward the head. Influenza vaccines must be updated each year because the HA head constantly changes – a phenomenon called “antigenic drift.” The new vaccine candidate consists only of the HA stem. The stem is more conserved than the head between influenza strains and subtypes, and thus is less likely to change every season. Scientists predict that targeting the HA stem without the distraction of the HA head could induce stronger and longer-lasting immunity.

Influenza A viral HA can be divided into groups 1 and 2, and further subdivided into multiple subtypes based on their sequences. Scientists used the stem of an HA from a group 1 influenza virus to create the nanoparticle vaccine. Both group 1 and group 2 influenza viruses are among those responsible for seasonal influenza as well as the sporadic and deadly outbreaks of avian influenza viruses with pandemic potential. The H1ssF vaccine elicited responses that broadly neutralized group 1 influenza A viruses. Additional clinical trials are underway to test a ferritin nanoparticle-based vaccine designed to elicit group 2 influenza A viruses, and to test the H1ssF and the group 2 vaccine together in a cocktail aimed at approaching universal influenza vaccine coverage.

The H1ssF vaccine is unique in that it only displays the stem part of the influenza HA protein on the surface of a nanoparticle made of nonhuman ferritin. Ferritin spontaneously self-assembles into an eight-sided nanoparticle. When designed to display a part of the HA protein, the ferritin-HA proteins form particles displaying HA spikes on their surface, mimicking the natural organization of HA on the influenza virus. Displaying influenza HA surface proteins on the outside of the nanoparticle makes them easily accessible to immune cells that encounter the nanoparticle. The immune system can then learn to develop antibodies against displayed proteins. 

References:
A Widge, et al. An Influenza Hemagglutinin Stem Nanoparticle 1 Vaccine Induces Cross
Group 1 Neutralizing Antibodies in Healthy Adults. Science Translational Medicine DOI: 10.1126/scitranslmed.ade4790 (2023).

S Andrews, et al. An Influenza H1 Hemagglutinin Stem-Only Immunogen Elicits a Broadly Cross-Reactive B Cell Response in Humans. Science Translational Medicine DOI: 10.1126/scitranslmed.ade4976 (2023).

ClinicalTrials.gov search identifier NCT03814720.

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Experimental Cancer Vaccine Shows Promise in Animal Studies

An experimental therapeutic cancer vaccine induced two distinct and desirable immune system responses that led to significant tumor regression in mice, report investigators from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.  

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Monoclonal Antibody Prevents Malaria Infection in African Adults

One dose of an antibody drug safely protected healthy, non-pregnant adults from malaria infection during an intense six-month malaria season in Mali, Africa, a National Institutes of Health clinical trial has found. The antibody was up to 88.2% effective at preventing infection over a 24-week period, demonstrating for the first time that a monoclonal antibody can prevent malaria infection in an endemic region.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

John Misasi, M.D.

Hongying Duan (Holdsworth), M.D., Ph.D.

Staff Scientist
Section or Unit Name
Virology Laboratory
Lab/Program Name
First Name
Hongying
Last Name
Duan
Exclude from directory
Off
Section/Unit: Location
This Researcher/Clinician’s Person Page
Parent Lab/Program
Program Description

1. Elicitation and maturation of VRC01-class antibodies in transgenic mouse models, which allows a germline human IGHV1-2*02 segment to undergo normal V(D)J recombination and, thereby, leads to the generation of peripheral B cells that express a highly diverse repertoire of VRC01-related receptors. A strong VRC01-class predicted germline precursor binder, eOD-GT8 60mer, was able to elicit and enrich VRC01-class antibodies in this mouse model.

2. Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires with sequential immunization. The serum from the stepwise immunized mice exhibited cross-strain neutralizing activities and the mutation frequency of both the IGHV1-2*02 IgH and VRC01 IgL chains steadily increased.

 3. Glycan Masking Focuses Immune Responses to the HIV-1 CD4-Binding Site and Enhances Elicitation of VRC01-Class Precursor Antibodies. A substantial portion of eOD-GT8-elicited antibodies target non-CD4bs epitopes, potentially limiting its efficacy. To mask irrelevant epitopes, we introduced N-linked glycans into non-CD4bs surfaces of eOD-GT8 and evaluated the mutants in a VRC01-class mouse model. Compared to the parental eOD-GT8, a mutant with five added glycans stimulated significantly higher proportions of CD4bs specific serum responses and CD4bs-specific immunoglobulin G+ B cells including VRC01-class precursors.

4. Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) develop, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated that each of the five lineages was initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization.

5. Fusion Peptide Priming –Alone or in Cocktail with Env Trimer– Imprints Broad HIV-1-Neutralizing Responses with a Characteristic Early B Cell Signature. To optimize the immunization regimen and shorten the “neutralization-eclipse phase”, we analyzed plasma and antigen-specific B cells from 7 different immunization regimens in 32 macaques with a common boosting module comprising five FP/Trimer immunizations. We found that FP priming to imprint cross-reactive FP-directed HIV-neutralizing responses, with FP-trimer cocktail elicited the earliest cross-strain responses.

6. Fusion Peptide Priming Reduces Immune Responses to HIV-1 Envelope Trimer Base. Soluble ‘SOSIP’-stabilized envelope (Env) trimers are promising HIV-vaccine immunogens. However, they induce high titer responses against the glycan-free trimer base, which is occluded on native virions. To delineate the impact on base responses of priming with immunogens targeting the fusion peptide (FP) site of vulnerability, we quantified the prevalence of trimer-base antibody responses in 49 non-human primates (NHPs) immunized with various SOSIP-stabilized Env trimers and FP-carrier conjugates. We found that trimer-base responses accounted for ~90% of the overall trimer response in animals immunized with trimer only, ~70% in animals immunized with a cocktail of SOSIP-trimer and FP-conjugate, and ~30% in animals primed with FP-conjugate prior to trimer immunization, with neutralization breadth in FP-conjugate-primed animals correlated inversely with trimer-base responses.

Selected Publications

Kong R, Duan H, Sheng Z, Xu K, Acharya P, Chen X, Cheng C, Dingens AS, Gorman J, Sastry M, Shen CH, Zhang B, Zhou T, Chuang GY, Chao CW, Gu Y, Jafari AJ, Louder MK, O'Dell S, Rowshan AP, Viox EG, Wang Y, Choi CW, Corcoran MM, Corrigan AR, Dandey VP, Eng ET, Geng H, Foulds KE, Guo Y, Kwon YD, Lin B, Liu K, Mason RD, Nason MC, Ohr TY, Ou L, Rawi R, Sarfo EK, Schön A, Todd JP, Wang S, Wei H, Wu W; NISC Comparative Sequencing Program, Mullikin JC, Bailer RT, Doria-Rose NA, Karlsson Hedestam GB, Scorpio DG, Overbaugh J, Bloom JD, Carragher B, Potter CS, Shapiro L, Kwong PD, Mascola JR. Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell. 2019 Jul 25;178(3):567-584.e19.

Duan H, Chen X, Boyington JC, Cheng C, Zhang Y, Jafari AJ, Stephens T, Tsybovsky Y, Kalyuzhniy O, Zhao P, Menis S, Nason MC, Normandin E, Mukhamedova M, DeKosky BJ, Wells L, Schief WR, Tian M, Alt FW, Kwong PD, Mascola JR. Glycan Masking Focuses Immune Responses to the HIV-1 CD4-Binding Site and Enhances Elicitation of VRC01-Class Precursor Antibodies. Immunity. 2018 Aug 21;49(2):301-311.e5.

Tian M, Cheng C, Chen X, Duan H, Cheng HL, Dao M, Sheng Z, Kimble M, Wang L, Lin S, Schmidt SD, Du Z, Joyce MG, Chen Y, DeKosky BJ, Chen Y, Normandin E, Cantor E, Chen RE, Doria-Rose NA, Zhang Y, Shi W, Kong WP, Choe M, Henry AR, Laboune F, Georgiev IS, Huang PY, Jain S, McGuire AT, Georgeson E, Menis S, Douek DC, Schief WR, Stamatatos L, Kwong PD, Shapiro L, Haynes BF, Mascola JR, Alt FW. Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires. Cell. 2016 Sep 8;166(6):1471-1484.e18.

Duan H, Kachko A, Zhong L, Struble E, Pandey S, Yan H, Harman C, Virata-Theimer ML, Deng L, Zhao Z, Major M, Feinstone S, Zhang P. Amino acid residue-specific neutralization and nonneutralization of hepatitis C virus by monoclonal antibodies to the E2 protein. J Virol. 2012 Dec;86(23):12686-94.

Duan H, Takagi A, Kayano H, Koyama I, Morisseau C, Hammock BD, Akatsuka T. Monoclonal antibodies reveal multiple forms of expression of human microsomal epoxide hydrolase. Toxicol Appl Pharmacol. 2012 Apr 1;260(1):27-34.

Duan H, Struble E, Zhong L, Mihalik K, Major M, Zhang P, Feinstone S, Feigelstock D. Hepatitis C virus with a naturally occurring single amino-acid substitution in the E2 envelope protein escapes neutralization by naturally-induced and vaccine-induced antibodies. Vaccine. 2010 Jun 7;28(25):4138-44.

Visit PubMed for a complete publication listing.

Additional Information

Tools/Resources / Core Facilities

Probes, B cell sorting and primers for mouse, NHP B cell sequencing.

Major Areas of Research
  • HIV vaccine development and evaluation
  • Animal models for HIV, Lassa, COVID-19 vaccine development
  • B cell and T cell analysis, antibody development and characterization