Potential Biological Cause for Postpartum Depression Found

Venatorx Pharmaceuticals Awarded BARDA Project BioShield Contract

NIH Funds UAMS Study Testing Rapid Genomic Surveillance for Antibiotic Resistant Infections

Media Type
Article
Publish or Event Date
Research Institution
University of Arkansas for Medical Sciences
Short Title
NIH Funds UAMS Study Testing Rapid Genomic Surveillance for Antibiotic Resistant Infections
Content Coordinator
Content Manager

NIH-Supported Clinical Trial of Phage Therapy for Cystic Fibrosis Begins

Enrollment has begun in an early-stage clinical trial evaluating bacteriophage therapy in adults with cystic fibrosis (CF) who carry Pseudomonas aeruginosa (P. aeruginosa) in their lungs. The trial is evaluating whether the bacteriophage, or “phage,” therapy is safe and able to reduce the amount of bacteria in the lungs of volunteers. The trial is being conducted by the Antibacterial Resistance Leadership Group (ARLG), funded by the National Institute of Allergy and Infectious Diseases.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Candida auris—a mysterious and tenacious enemy

NIAID Now |

Certain species of fungi are responsible for many common infections including yeast infections, ringworm, thrush, and athlete’s foot. While these diseases may not lead to serious outcomes for most healthy individuals, fungal infections can be deadly, especially for patients with weakened immune systems. One fungal pathogen, Candida auris, is an emerging healthcare-associated infection of growing public health concern. The first case of Candida auris was reported in 2009 in Japan, where it was isolated from a patient’s ear (Auris is Latin for “ear”). Outbreaks have since emerged rapidly around the globe. In the United States, C. auris infections have been increasing over the past few years, with more than 1460 cases reported in 2021. C. auris is typically found in hospitals and other healthcare settings and can cause serious bloodstream and wound infections.

Like other Candida species, C. auris is a type of yeast. However, unlike its yeasty cousins, this pathogen can colonize patients’ skin and persist for long periods of time on environmental surfaces. Another challenge is that C. auris is often resistant to one or more of the major classes of drugs that are typically used to treat fungal infections. While most C. auris infections can be treated with a class of antifungals called echinocandins, resistance to these drugs has also been reported, making some infections difficult to treat. C. auris is the only fungal pathogen identified as an ‘urgent’ threat in CDC’s Antibiotic Resistance Threat Report.

Back to basics

NIAID supports several researchers who are asking fundamental questions about the biology of C. auris. Today’s NIAID Now post features insights from NIAID-funded researchers, Jeniel Nett, M.D., Ph.D., associate professor of medicine and medical microbiology and immunology at University of Wisconsin-Madison, and Christina Cuomo, Ph.D., associate director of the Genomic Center of Infectious Diseases at the Broad Institute of Massachusetts Institute of Technology and Harvard University.

How is C. auris able to colonize the skin and persist in the environment?

C. auris can live and grow on the skin or in the body without causing illness. However, people who are colonized with C. auris may spread the pathogen to others and are at risk of getting sick later on if they develop infections. One important question to understanding C. auris outbreaks is: how is the fungus able to colonize skin so effectively and to persist in the environment? Dr. Nett’s research group is tackling this question by studying C. auris growth in the lab using two different systems. The first is designed to mimic human sweat and skin. Nett noted, “we think that this represents skin to some degree but also when surfaces get contaminated with skin and sweat components.” The other system is pig skin. “Pigs have similar skin to humans in terms of skin thickness and some of the cell types,” Nett explained. Using these systems, Nett and colleagues have shown that C. auris is able to readily grow on skin. “It really seems to mirror what we’re seeing patients,” said Nett. They’ve found that when the fungus is grown in the synthetic sweat medium, it forms multi-layered plaques, or biofilms, both on the pig skin as well as on hard surfaces. Compared to other Candida species, the biofilms are thicker and contain more viable organisms. C. auris biofilms can also persist on surfaces without drying out for up to two weeks in the lab.

A professional headshot of Dr. Nett standing in front of a window. She has long blonde hair, and is wearing a lab coat.

Jeniel Nett, M.D., Ph.D., associate professor of medicine and medical microbiology and immunology at University of Wisconsin-Madison

Credit: Dr. Jeniel Nett

Nett’s research demonstrates the ability of the fungus to colonize skin and form persistent biofilms on environmental surfaces, which has implications for transmission in healthcare settings. “This really becomes important with reusable medical equipment that goes room to room,” Nett emphasized. The systems Nett’s group has developed to study C. auris in the lab can also inform potential strategies to remove C. auris from the skin of patients. Nett’s research has shown that while antiseptics are somewhat effective, they are not as active against C. auris when the fungus is growing in the skin environment compared to when it is growing without the skin present. In a published manuscript, Nett and colleagues demonstrated that the commonly used topical antiseptic chlorhexidine does not fully remove C. auris from the skin of patients. They also showed that by adding isopropanol, as well as some essential oils, including tea tree and lemongrass, to chlorhexidine, they were able to improve the activity of the antiseptic. Her group is still investigating what specific components of skin and sweat are triggering biofilm growth in C. auris. Understanding this could lead to better, more specific strategies to disrupt skin colonization.

How did C. auris outbreaks emerge around the world, and how has the fungus become multidrug-resistant?

Soon after it was first identified, outbreaks of C. auris arose in four distinct locations—South Asia, East Asia, Africa, and South America—nearly simultaneously. Dr. Cuomo and colleagues are using a genomics approach to better understand this phenomenon. 
“One fundamental question genomics can answer is, what has been the history of the pathogen over time?” Cuomo explained. “We can take isolates from different patients, and by comparing them we can infer back in time to where they have a common connection.”

A professional headshot of Dr. Cuomo, standing in a bright atrium. She has short brown hair and is wearing glasses.

Christina Cuomo, Ph.D., associate director of the Genomic Center of Infectious Diseases at the Broad Institute of Massachusetts Institute of Technology and Harvard University

Credit: Dr. Christina Cuomo

Together with colleagues at the Centers for Disease Control and Prevention, Cuomo’s group helped confirm that the different outbreaks were caused by distinct genetic groups, or ‘clades.’ As cases have continued to spread around the globe, researchers have been able to trace new C. auris isolates back to these four major clades, allowing them to understand how the different outbreaks are connected.

Expanding on this initial work, Cuomo’s group is looking more closely at the different C. auris clades and identifying key genetic differences both within and between these groups as well as among C. auris and other related Candida species. From this analysis, they have generated hypotheses about which genes in the fungus are important for contributing to disease in humans. Such studies provide important insight into the biology of C. auris and can help identify potential targets for new drugs.

Researchers are also actively trying to understand how this fungal species has evolved to become resistant to certain antifungal drugs. Combining clinical data and experimental evolution studies, Cuomo’s group has identified specific mutations, or genetic changes, contributing to resistance to the major classes of antifungal drugs, including echinocandins. Cuomo explained that a single change in one of the C. auris proteins causes the fungus to go from sensitive to resistant, which explains why patients will sometimes stop responding in the middle of treatment with echinocandins.

The genomic resources that Cuomo and her group have developed are used by public health laboratories to help assess the frequency of drug resistance in C. auris. Understanding what genetic changes are associated with drug resistance can also help inform patient treatment. “That’s the kind of information we want to be marrying to traditional diagnostics, to think about how can we best type resistance across the course of a patient’s treatment,” Cuomo noted. “We know that resistance can arise while on treatment. We’d like to detect that as soon as it emerges, and not when the patient succumbs to a very high fever or other devastating symptoms.”

From knowledge to solutions

Working on a novel pathogen is a challenging effort. Both Drs. Nett and Cuomo have forged into relatively new scientific territory, and have had to develop new tools, methods, and resources to study C. auris. However, their work has the potential to make a significant impact against this emerging disease. While the scientific questions they both are tackling are fundamental in nature, the answers are of critical importance to patient care and public health interventions.

Learn more about this research by reading recent papers from Dr. Nett, Dr. Cuomo, and colleagues:

CJ, Johnson et al. Modeling Candida auris skin colonization: Mice, swine, and humans. PLOS Pathogens. DOI: 10.1371/journal.ppat.1010730 (2022)

JM Rybak et al. In vivo emergence of high-level resistance during treatment reveals the first identified mechanism of amphotericin B resistance in Candida auris. Clin Microbiology Infect. DOI:10.1016/j.cmi.2021.11.024 (2022). 

C Johnson et al. Augmenting the Activity of Chlorhexidine for Decolonization of Candida auris from Porcine skin. J Fungi. DOI: : 10.3390/jof7100804 (2021).

J Muñoz et al. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics. DOI: : 10.1093/genetics/iyab029 (2021). 

N Chow et al. Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses. mBio. DOI: : 10.1128/mBio.03364-19 (2020). 

M Horton et al. Candida auris Forms High-Burden Biofilms in Skin Niche Conditions and on Porcine Skin. mSphere. DOI : 10.1128/mSphere.00910-19 (2020).

S Lockhard et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin Infect Dis. DOI: 10.1093/cid/ciw691 (2017) 

Eix EF, CJ Johnson, KM Wartman, JF Kernien, JJ Meudt, D Shanmuganayagam, ALF Gibson, JE Nett. 2022. Ex vivo human and porcine skin effectively model C. auris colonization, differentiating robust and poor fungal colonizers. J Infect Dis. PMID: 35267041

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Epidemiology in the Division of Intramural Research

Epidemiology is a core science in public health that includes surveillance, observation, hypothesis testing, analytic research, and experiments and interventions. As the fundamental science of preventive medicine and public health, epidemiology has traditionally focused on disease causation through population studies. Epidemiologists develop and evaluate hypotheses about the effects of genetic, behavioral, environmental, and healthcare factors on human health and develop the knowledge bases for disease prevention and control programs. The field is interdisciplinary and has a methodology distinct from, but dependent on, biostatistics. Epidemiologists incorporate into their research the knowledge base and tools of other disciplines including the biologic sciences, clinical research, and other population sciences.

Main Areas of Focus

While our primary efforts focus on leading research relating to different aspects of infectious disease epidemiology and public health, epidemiologists at NIAID support research of relevance to the mission of NIAID, with approaches that include the following:

  • Design of clinical and population-based studies with appropriate methods and sampling strategies, focusing on reducing study bias and improving data collection
  • Analysis of randomized and non-randomized study cohorts using multivariable methods to identify host and pathogen contributions to infection and disease
  • Application of machine learning and other data science tools to study disease risk factors for selected infectious diseases and immune disorders
  • Molecular techniques to investigate immunological responses to emerging and re-emerging viral diseases
  • Research areas of particular interest include emerging viral pathogens, antimicrobial resistance, nontuberculous mycobacteria, malaria, SARS-CoV-2, Ebola, invasive fungal infections, inborn errors of immunity
Contact Information

Leah Katzelnick, Ph.D, M.P.H. – Seroepidemiology

Jennifer Kwan, Ph.D. – Infectious disease epidemiology, geospatial statistics

Rebecca Prevots, Ph.D. – Epidemiology of nontuberculous mycobacteria

Emily Ricotta, Ph.D., M.Sc. – Infectious disease epidemiology, data management

Content Coordinator

Emily E. Ricotta, Ph.D., M.Sc. (Departed NIAID, March 2024)

Jianbing Mu, M.D., Ph.D.

Associate Scientist (Core)

Major Areas of Research

  • Genetic and epigenetic gene regulations in Plasmodium parasites
  • Molecular biology of malaria pathogenesis

Program Description

  • Parasites genetic diversity and associated phenotypes, such as antimalarial drug resistance and parasites virulence factors
  • Epigenetic and epitranscriptomic modifications in parasite development and identification of novel targets for antimalaria drugs or transmission blocking
  • Development of high-sensitivity assay for Plasmodium infection and others

Biography

Dr. Mu received his M.D. from Shanxi Medical University, China, and his Ph.D. from Saitama Medical School, Japan. He then joined NIAID Division of Intramural Research in 2000 and served as visiting fellow, research fellow, and staff scientist. Now, Dr. Mu is an associate scientist in the office of the Chief of Laboratory of Malaria and Vector Research (LMVR), NIAID. His research mainly focuses on the functional genomics of Plasmodium parasites, including the mechanisms of malaria gene regulation, drug responses, immune evasion, and pathogenesis by applying various approaches, such as genetic mapping and genome-wide association (GWA), genetic manipulation, epigenetic and epitranscriptomic modification. Findings from his research include the genome-wide association study to map the loci associated with P. falciparum resistance to antimalarial drugs, epigenetic regulation of antigenic variation in P. falciparum parasites, epitranscriptomic modification in P. falciparum gene regulations and the development of the high-sensitivity assay for Plasmodium infection.

Dr. Mu serves as the Editorial Board member for journals including Current Genomics, Frontiers in Cell and Developmental Biology, and Journal of Tropical Medicine. Dr. Mu received numerous awards, including NIAID Merit Award and Performance Award.

Publications

Liu M*, Guo G*, Qian P*, Mu J*, Lu B, He X, Fan Y, Shang X, Yang G, Shen S, Liu W, Wang L, Gu L, Mu Q, Yu X, Zhao Y, Culleton R, Cao J, Jiang L, Wellems TE, Yuan J, Jiang C, Zhang Q (2022) 5-methylcytosine modification by Plasmodium NSUN2 stabilizes mRNA and mediates the development of gametocytes.Proc Natl Acad Sci U S A. Mar 1;119(9):e2110713119. doi: 10.1073/pnas.2110713119.

Mu J, Yu LL, Wellems TE (2020) Sensitive Immunoassay Detection of Plasmodium Lactate Dehydrogenase by Inductively Coupled Plasma Mass Spectrometry. Front Cell Infect Microbiol. Jan 11;10:620419. doi: 10.3389/fcimb.2020.620419.

Xiao B, Yin S, Hu Y, Sun M, Wei J, Huang Z, Wen Y, Dai X, Chen H, Mu J, Cui L, Jiang L (2019) Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum. Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):255-260. doi: 10.1073/pnas.1813542116.

Mu J, Andersen JF, Valenzuela JG, Wellems TE (2017) High-Sensitivity Assays for Plasmodium falciparum Infection by Immuno-Polymerase Chain Reaction Detection of PfIDEh and PfLDH Antigens.J Infect Dis. Sep 15;216(6):713-722. doi: 10.1093/infdis/jix369.

Jiang L*, Mu J*, Zhang Q, Ni T, Srinivasan P, Rayavara K, Yang W, Turner L, Lavstsen T, Theander TG, Peng W, Wei G, Jing Q, Wakabayashi Y, Bansal A, Luo Y, Ribeiro JM, Scherf A, Aravind L, Zhu J, Zhao K, Miller LH (2013) PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. .Nature. Jul 11;499(7457):223-7. doi: 10.1038/nature12361. 

Mu J, Myers RA, Jiang H, Liu S, Ricklefs S, Waisberg M, Chotivanich K, Wilairatana P, Krudsood S, White NJ, Udomsangpetch R, Cui L, Ho M, Ou F, Li H, Song J, Li G, Wang X, Seila S, Sokunthea S, Socheat D, Sturdevant DE, Porcella SF, Fairhurst RM, Wellems TE, Awadalla P, Su XZ (2010) Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat Genet. Mar;42(3):268-71. doi: 10.1038/ng.528.

View a complete listing of publications on PubMed.

Tools & Equipment

Sanger sequencing (ABI3730xl) and illumina NextSeq 550 System are available for genotyping, DNA sequencing, whole-genome sequencing and RNA-seq etc.

Section or Unit Name
Malaria Genetics Section
First Name
Jianbing
Last Name
Mu
Exclude from directory
Off
Section/Unit: Year Established
Section/Unit: Location
This Researcher/Clinician’s Person Page
Program Description
  • Parasites genetic diversity and associated phenotypes, such as antimalarial drug resistance and parasites virulence factors
  • Epigenetic and epitranscriptomic modifications in parasite development and identification of novel targets for antimalaria drugs or transmission blocking
  • Development of high-sensitivity assay for Plasmodium infection and others
  • Multi-omic studies on disease vectors, with a focus on ticks and mosquitoes, aimed at identifying biomarkers and advancing vaccine development
Selected Publications

Lee SK, Crosnier C, Valenzuela-Leon PC, Dizon BLP, Atkinson JP, Mu J, Wright GJ, Calvo E, Gunalan K, Miller LH. Complement receptor 1 is the human erythrocyte receptor for Plasmodium vivax erythrocyte binding protein. Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2316304121.

Liu M, Guo G, Qian P, Mu J, Lu B, He X, Fan Y, Shang X, Yang G, Shen S, Liu W, Wang L, Gu L, Mu Q, Yu X, Zhao Y, Culleton R, Cao J, Jiang L, Wellems TE, Yuan J, Jiang C, Zhang Q (2022) 5-methylcytosine modification by Plasmodium NSUN2 stabilizes mRNA and mediates the development of gametocytes. Proc Natl Acad Sci U S A. Mar 1;119(9):e2110713119.

Xiao B, Yin S, Hu Y, Sun M, Wei J, Huang Z, Wen Y, Dai X, Chen H, Mu J, Cui L, Jiang L (2019) Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum. Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):255-260.

Mu J, Andersen JF, Valenzuela JG, Wellems TE (2017) High-Sensitivity Assays for Plasmodium falciparum Infection by Immuno-Polymerase Chain Reaction Detection of PfIDEh and PfLDH Antigens. J Infect Dis. Sep 15;216(6):713-722.

Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P, Rayavara K, Yang W, Turner L, Lavstsen T, Theander TG, Peng W, Wei G, Jing Q, Wakabayashi Y, Bansal A, Luo Y, Ribeiro JM, Scherf A, Aravind L, Zhu J, Zhao K, Miller LH (2013) PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature. Jul 11;499(7457):223-7.

Mu J, Myers RA, Jiang H, Liu S, Ricklefs S, Waisberg M, Chotivanich K, Wilairatana P, Krudsood S, White NJ, Udomsangpetch R, Cui L, Ho M, Ou F, Li H, Song J, Li G, Wang X, Seila S, Sokunthea S, Socheat D, Sturdevant DE, Porcella SF, Fairhurst RM, Wellems TE, Awadalla P, Su XZ. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat Genet. 2010 Mar;42(3):268-71.

Visit PubMed for a complete publications listing

Additional Information

Tools & Equipment

Dr. Mu oversees the Genomics Core, which is equipped with advanced technologies to facilitate a broad spectrum of genomic and multi-omic studies. These include Sanger sequencing using the ABI3730xl, which provides high-throughput and high-accuracy DNA sequencing for genotyping and targeted DNA analysis. The Illumina NextSeq 550 System enables high-throughput next-generation sequencing (NGS), supporting applications such as whole-genome sequencing, RNA sequencing (RNA-seq), and epigenomics. Additionally, the CosMx Spatial Molecular Imager (SMI) facilitates cutting-edge spatial multiomics analysis, allowing for high-resolution spatial profiling of RNA and protein expression in complex tissues. Together, these platforms provide comprehensive tools for exploring genetic, transcriptomic, and spatial molecular data to address a variety of research questions.

Major Areas of Research
  • Genetic and epigenetic gene regulations in Plasmodium parasites
  • Molecular biology of malaria pathogenesis

Veronique Nussenblatt, M.D, Sc.M., M.H.S

Veronique Nussenblatt, M.D, Sc.M., M.H.S

Chief, Infectious Disease Consult Service
Associate Program Director, Infectious Disease Fellowship
Director, NIH Residency Electives Program (REP) and Clinical Electives Program (CEP) for Medical Students

Major Areas of Research

  • COVID-19

Biography

Dr. Nussenblatt received her M.D. from the University of Maryland School of Medicine and completed her internal medicine residency and infectious disease fellowship at the Johns Hopkins University School of Medicine. After completing her training, she joined the Infectious Disease faculty at The Johns Hopkins School of Medicine until she moved to Belgium where she spent two years providing clinical and scientific expertise for the development and implementation of clinical studies within two European clinical trial networks.

Program Description

Dr. Nussenblatt specialized in general infectious diseases as well as managing infections in immunocompromised hosts. She provides diagnostic and therapeutic expertise for the management of infections in patients enrolled in clinical protocols at the NIH. She has a particular interest in COVID-19 in immunocompromised patients. Dr. Nussenblatt provides clinical supervision and training of infectious disease fellows and of residents and medical students rotating on the Infectious Disease Consult Service at the NIH.  

Selected Publications

Visit PubMed for a complete publication listing.

Training Programs

Section or Unit Name
Infectious Disease Consult Service
First Name
Veronique
Last Name
Nussenblatt
Exclude from directory
Off
Section/Unit: Location
This Researcher/Clinician’s Person Page
Program Description

Dr. Nussenblatt specialized in general infectious diseases as well as managing infections in immunocompromised hosts. She provides diagnostic and therapeutic expertise for the management of infections in patients enrolled in clinical protocols at the NIH. She has a particular interest in COVID-19 in immunocompromised patients. Dr. Nussenblatt provides clinical supervision and training of infectious disease fellows and of residents and medical students rotating on the Infectious Disease Consult Service at the NIH. 

Selected Publications

Suh GA, Lodise TP, Tamma PD, Knisely JM, Alexander J, Aslam S, Barton KD, Bizzell E, Totten KMC, Campbell JL, Chan BK, Cunningham SA, Goodman KE, Greenwood-Quaintance KE, Harris AD, Hesse S, Maresso A, Nussenblatt V, Pride D, Rybak MJ, Sund Z, van Duin D, Van Tyne D, Patel R; Antibacterial Resistance Leadership Group. Considerations for the Use of Phage Therapy in Clinical Practice. Antimicrob Agents Chemother. 2022 Mar 15;66(3):e0207121.

Nussenblatt V, Roder AE, Das S, de Wit E, Youn JH, Banakis S, Mushegian A, Mederos C, Wang W, Chung M, Pérez-Pérez L, Palmore T, Brudno JN, Kochenderfer JN, Ghedin E. Year-long COVID-19 infection reveals within-host evolution of SARS-CoV-2 in a patient with B cell depletion. medRxiv [Preprint]. 2021 Oct 5:2021.10.02.21264267.

Melendez-Munoz R, Marchalik R, Jerussi T, Dimitrova D, Nussenblatt V, Beri A, Rai K, Wilder JS, Barrett AJ, Battiwalla M, Childs RW, Fitzhugh CD, Fowler DH, Fry TJ, Gress RE, Hsieh MM, Ito S, Kang EM, Pavletic SZ, Shah NN, Tisdale JF, Gea-Banacloche J, Kanakry CG, Kanakry JA. Cytomegalovirus Infection Incidence and Risk Factors Across Diverse Hematopoietic Cell Transplantation Platforms Using a Standardized Monitoring and Treatment Approach: A Comprehensive Evaluation from a Single Institution. Biol Blood Marrow Transplant. 2019 Mar;25(3):577-586.

Sigfrid L, Reusken C, Eckerle I, Nussenblatt V, Lipworth S, Messina J, Kraemer M, Ergonul O, Papa A, Koopmans M, Horby P. Preparing clinicians for (re-)emerging arbovirus infectious diseases in Europe. Clin Microbiol Infect. 2018 Mar;24(3):229-239.

Nussenblatt V, Avdic E, Berenholtz S, Daugherty E, Hadhazy E, Lipsett PA, Maragakis LL, Perl TM, Speck K, Swoboda SM, Ziai W, Cosgrove SE. Ventilator-associated pneumonia: overdiagnosis and treatment are common in medical and surgical intensive care units. Infect Control Hosp Epidemiol. 2014 Mar;35(3):278-84.

Visit PubMed for a complete publication listing.

Additional Information

Training Programs

Major Areas of Research
  • COVID-19