Rapid Diagnostics to Combat Antimicrobial Resistance

A New Rapid Diagnostic for Melioidosis

NIAID-funded researchers have developed a new rapid diagnostic for the tropical disease melioidosis, a disease caused by the bacterium Burkholderia pseudomallei. Melioidosis affects approximately 165,000 people worldwide, mainly in Southeast Asia and northern Australia, and causes 89,000 deaths annually.

An Antibody Test for COVID-19

NIAID provided support for one of the first serologic tests for COVID-19, a two-step Enzyme-Linked ImmunoSorbent Assay (ELISA) which was developed by researchers at the Icahn School of Medicine at Mount Sinai.

Can Improved Tests Speed Up Treatment for Antibacterial Resistant Infections?

NIAID Now |

Recently, the UN General Assembly held a High-Level Meeting to discuss an urgent, global public health problem: Antimicrobial resistance (AMR), which occurs when bacteria, viruses, fungi and parasites evolve to evade antibiotics and other medicines that are meant to kill them. Currently, antimicrobial resistance results in approximately 1.3 million deaths worldwide, including 35,000 in the United States each year, according to the Centers for Disease Control and Prevention. Antibiotic resistance can make infections more difficult to treat—and, unfortunately, due in part to overuse and misuse of antibiotics, antimicrobial-resistant infections are becoming more common.

The National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, has prioritized AMR research for many years. For instance, through the Antibacterial Resistance Leadership Group (ARLG), the Institute has supported more than 60 AMR clinical research projects, involving more than 20,000 participants at sites around the world. The results of this work, combined with 10 years of coordinated efforts from across the U.S. government, have led to significant improvements in how public health officials consider antibiotics and how physicians can tackle difficult infections. As a global, evolving problem, AMR continues to demand new research and innovations from the public health sector.

One ongoing clinical trial is examining a particularly thorny facet of treating antimicrobial resistant (AMR) infections: when dealing with antibiotic-resistant infections, healthcare providers may need to try several different treatments before they identify an effective one, and tests to verify whether treatments will work can take days to complete. This delay can slow the patient’s recovery or lead to death. For example, ineffective therapy due to treatment delay is associated with high mortality among patients with bloodstream infections caused by Gram-negative bacteria. 

A new clinical trial sponsored by NIAID is currently evaluating whether the use of a rapid test of antibiotic susceptibility for bacteria growing in blood cultures improves clinical outcomes for patients with sepsis in settings that have high rates of antibiotic-resistant bacterial infections. The trial is being conducted by ARLG and will ultimately enroll roughly 900 hospitalized participants at seven locations around the world. 

The Fast Antibiotic Susceptibility Testing for Gram-Negative Bacteremia Trial (FAST) will test whether use of the VITEK® REVEAL™ AST System, a direct-from-positive-blood-culture fast phenotypic susceptibility test (manufactured by Specific Diagnostics, San Jose, CA, a wholly owned subsidiary of bioMérieux, Inc., Salt Lake City, UT), can speed up the identification of effective antibiotics to treat bloodstream infections and lead to better patient outcomes. The VITEK® REVEAL™ system is already available for clinical use in the European Union (and recently received FDA 510(k) Clearance (K230675) on June 20, 2024, and can identify phenotypic susceptibility of 10 different bacteria to 23 different antibiotics. Unlike standard of care susceptibility testing, which typically takes several days to provide results, the VITEK® REVEAL™ test results are available in an average of 5.5 hours.

A recent clinical trial supported by NIAID through the ARLG showed that using a similar rapid test for antimicrobial susceptibility helped healthcare providers identify and use effective antibiotics faster than standard-of-care testing. However, that trial was unable to show whether using a rapid test led to better patient outcomes—possibly because the trial was carried out in areas with relatively low rates of antimicrobial-resistant infections. The researchers hope that data from the FAST trial will show whether the test improves outcomes in regions where many patients have antimicrobial-resistant infections.

The FAST trial has enrolled hospitalized participants with Gram-negative bacteria identified in their blood. Such bacteria include Klebsiella species and Escherichia coli. They have been randomized to one of two groups: half the participants are having their blood cultures tested with VITEK® REVEAL™ as well as standard bacterial culture and antibiotic susceptibility testing. The other participants are serving as a control group and their blood cultures will undergo standard bacterial culture and susceptibility testing. The participants’ progress is being monitored for 30 days, as clinical staff record how quickly participants recover and whether they experience any negative effects, such as worsening or relapsing while still in the hospital, requiring readmission to the hospital later for the same problem, acquiring a new infection while in the hospital, or death.

Improved testing alone will not eliminate the threat of AMR infections. For that, healthcare providers will need better therapeutics, better means of keeping the infections from spreading, and other tools. However, when patients present to the hospital with severe infections, the initial hours of waiting for test results can make all the difference. Confirming that rapid tests actually improve patient outcomes is an important step on the road to fighting back against ever-changing pathogens.

To read more about this trial, search ClinicalTrials.gov using the identifier NCT06174649.

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Defining the Goals of HIV Science Through 2034

NIAID Now |

Discovery, Development and Delivery for an Increasingly Interconnected HIV Landscape 

By Carl Dieffenbach, Ph.D., director, Division of AIDS, NIAID

This blog is the third in a series about the future of NIAID's HIV clinical research enterprise. For more information, please visit the HIV Clinical Research Enterprise page.

The NIAID HIV clinical research enterprise has celebrated important scientific advances since awards were made to the current networks in 2020. These achievements include the culminating steps in decades of research that led to approval of the first generation of long-acting medications for HIV prevention—a milestone that raises the standard for any future antiretroviral drug development to levels unimaginable even a decade ago. Our research has highlighted opportunities to maintain the overall health of people with HIV throughout their lifespans. We continue to expand the boundaries of scientific innovation in pursuit of durable technologies that could hasten an end to the HIV pandemic, especially preventive vaccines and curative therapy. During the COVID-19 public health emergency, our networks stepped forward to deliver swift results that advanced vaccines and therapeutics within a year of the World Health Organization declaring the global pandemic, while maintaining progress on our HIV research agenda. The impact of this collective scientific progress is evident worldwide.

Together with my NIH colleagues, I express sincere gratitude to the leaders and staff of current clinical trials networks, our research and civil society partners, and most importantly, clinical study participants and their loved ones, for their enduring commitment to supporting science that changes lives.

As we do every seven years, we are at a point in the funding cycle when our Institute engages research partners, community representatives, and other public health stakeholders in a multidisciplinary evaluation of network progress toward short- and long-term scientific goals. This process takes account of knowledge gained since the networks were last funded and identifies essential course corrections based on the latest scientific and public health evidence and priorities. Subsequent NIAID HIV research investments will build on the conclusions of these discussions.

Looking to the future, we envision an HIV research enterprise that follows a logical evolution in addressing new scientific priorities informed by previous research progress. We will fund our next networks to align with updated research goals to take us through the end of 2034. The HIV research community’s outstanding infrastructure is the model for biomedical research. Now, our capacity must reflect an increasing interdependence across clinical practice areas and public health contexts. Our goals for the next networks are to:

  • Maintain our support for core discovery and translational research to address gaps in biomedical HIV prevention and treatment, including a vaccine and therapeutic remission or cure. Our objective is to identify effective interventions that expand user choice and access, as well as improve quality of life across the lifespan;
  • Provide the multidisciplinary leadership required to address the intersections between HIV and other diseases and conditions throughout the lifespan, including noncommunicable diseases, such as diabetes mellitus and substance use disorder, and infectious diseases that share health determinants with HIV, such tuberculosis and hepatitis;
  • Compress protocol development and approval timelines for small and early-stage trials to enable more timely translation of research concepts to active studies; 
  • Respond to discrete implementation science research questions as defined by our implementation counterparts, including federal partners at the Centers for Disease Control and Prevention, Health Resources and Services Administration, U.S. Agency for International Development, agencies implementing the U.S. President’s Emergency Plan for AIDS Relief, and other nongovernmental funders and implementing organizations worldwide;  
  • Draw from nimble and effective partnerships at all levels to leverage the necessary combination of financial resources, scientific expertise, and community leadership and operational capacity to perform clinical research that is accessible to and representative of the populations most affected by HIV, especially people and communities that have been underserved in the HIV response; 
  • Leverage our partners’ platforms if called on to close critical evidence gaps for pandemic response; and,
  • Plan for impact by mapping clear pathways to rapid regulatory decisions, scalable production, and fair pricing before the start of any efficacy study.

Our shared goal is to produce tools and evidence to facilitate meaningful reductions in HIV incidence, morbidity and mortality globally. I invite you to continue sharing your thoughts with us to help shape the future of HIV clinical research, and to review the blogs on specialized topics that we will continue to post on the HIV Clinical Research Enterprise page in the coming weeks. Please share your feedback, comments, and questions at NextNIAIDHIVNetworks@mail.nih.gov. Submissions will be accepted through December 2024. 

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Emergency Department Screening More Than Doubles Detection of Syphilis Cases

Providing optional syphilis tests to most people seeking care at a large emergency department led to a dramatic increase in syphilis screening and diagnosis, according to study of nearly 300,000 emergency department encounters in Chicago. Most people diagnosed had no symptoms, which suggests that symptom-based testing strategies alone could miss opportunities to diagnose and treat people with syphilis.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

NIH Awards Will Support Innovation in Syphilis Diagnostics

NIAID has awarded grants for 10 projects to improve diagnostic tools for congenital and adult syphilis—conditions currently diagnosed with a sequence of tests, each with limited precision. The Centers for Disease Control and Prevention estimates that adult and congenital syphilis cases increased by 80% and 183% respectively between 2018 and 2022—a crisis that prompted the U.S. Department of Health and Human Services (HHS) to establish a national taskforce to respond to the epidemic.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Charting the Path to an HIV-Free Generation

NIAID Now |

This blog is the first in a series about the future of NIAID's HIV clinical research enterprise. For more information, please visit the HIV Clinical Research Enterprise page.

NIAID supports four research networks as part of its HIV clinical research enterprise. Every seven years, the Institute engages research partners, community representatives, and other public health stakeholders in a multidisciplinary evaluation of network progress toward short- and long-term scientific goals. This process takes account of knowledge gained since the networks were last funded and identifies essential course corrections based on the latest scientific and public health evidence. Subsequent NIAID HIV research investments build on the conclusions of these discussions.

Pregnancy, childbirth and the postnatal period are a key focus of NIAID HIV research and call for measures to support the health of people who could become pregnant as well as their infants. Biological changes and social dynamics such as gender inequality, intimate partner violence, and discrimination can increase the likelihood of HIV acquisition during all natal stages. Of note, breastfeeding/chestfeeding is emerging as the predominant mode of vertical HIV transmission. NIAID is committed to optimizing HIV treatment and prevention options for people who might become pregnant, people who are pregnant and lactating, newborns, and young children who are still nursing or are living with HIV. Our goals are to offer safe, effective, acceptable, and accessible tools that provide evidence-based HIV prevention choices throughout the period of reproductive potential; prevent vertical HIV transmission to infants; and enable infants born with HIV to experience long periods of HIV remission or complete HIV clearance. We think these goals can be reached with discovery and development studies to advance biomedical interventions, and implementation science to rapidly introduce state-of-the-art interventions where they are needed most urgently.

In the current evaluation of our clinical trials networks, NIAID and other stakeholders are assessing novel interventions to interrupt the unacceptably high rate of new pediatric HIV diagnoses that persist in high burden countries. Recent research is rapidly expanding the evidence base for treatment for children and pregnant people with HIV, as well as biomedical prevention tools for pregnant people and people of reproductive potential who stand to benefit from their use. Some key advances include: 

  • Expanded evidence to support a cascade of multiple regulatory approvals making new therapeutic agents available to the youngest children with HIV;
  • Demonstrated safety of prevention products and antiretroviral therapy (ART) throughout pregnancy, including long-acting cabotegravir for HIV pre-exposure prophylaxis (PrEP); the controlled-release vaginal ring for HIV PrEP; and integrase strand transfer inhibitor-based ART for viral suppression in people with HIV; and
  • Rigorous examination of the potential of treatment initiation within hours of birth to enable ART-free HIV remission in children in a research setting.

Together, these advances open doors to improved tools for HIV prevention and treatment and help define remaining evidence gaps and research needs.

Biomedical research to accelerate evidence responsive to pediatric and perinatal needs 

As noted above, a NIAID-sponsored clinical trial led by the International Maternal Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT), called IMPAACT P1115, found that four children surpassed a year of HIV remission after pausing ART. The protocol remains active with subsequent iterations of the trial in children receiving more advanced ART regimens and novel broadly neutralizing antibody-based therapy. Further research is planned to identify biomarkers to predict the likelihood of HIV remission or rebound following ART interruption. Additional studies also are needed to better understand the mechanisms by which neonatal immunity and very early ART initiation limited the formation of latent HIV reservoirs to drive the original P1115 results.

Additional research priorities include developing early infant HIV testing assays that can promptly detect vertical HIV acquisition through breastfeeding/chestfeeding; wider examination of the safety and efficacy of presumptive ART pending an HIV diagnosis; administration of very early neonatal and pediatric formulations of the latest and future generations of long-acting ARVs for prevention and treatment and antibody-based therapy; and optimization of long-acting HIV treatment regimens to support health through periods of reproductive potential, pregnancy, and lactation.    

Implementation science to strengthen delivery 

Improving HIV prevention and care through reproductive years and intense early-life HIV intervention for infants will require an unprecedented level of reproductive health, prenatal, postnatal and pediatric HIV service integration. Several key clinical and operational questions warrant investigation through implementation science. The first is assuring availability of acceptable HIV testing modalities pre-conception, as well as universal HIV testing as part of routine obstetric care, and then supporting access to a person’s preferred PrEP method or ART based on HIV status. For infants whose birthing parent has HIV, we need evidence-based models for offering very early point-of-care infant HIV diagnosis and treatment, including presumptive ART for infants exposed to HIV in utero pending confirmatory testing. We also need to understand how to better support continued engagement in care to maintain viral suppression for childbearing people with HIV through the end of the lactating period and life course. We will provide special consideration for the preferences of adolescent and young adult cisgender women who are disproportionately affected by HIV in high burden settings globally. Defining local and contextually appropriate adaptations of successful models will be paramount for successful uptake. 

The research community plays an essential role in shaping NIAID’s scientific direction and research enterprise operations. We want to hear from you. Please share your questions and comments at Next NIAID HIV Networks.

About NIAID Clinical Trials Networks and Pediatric HIV

The IMPAACT Network examines prevention and treatment interventions for HIV, HIV-associated complications, and related pathogens in infants, children, and adolescents, and during pregnancy and postpartum periods. The Network is supported through grants from NIAID, with co-funding and scientific partnership from the NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development and the NIH National Institute of Mental Health. Three other networks—the HIV Vaccine Trials Network, HIV Prevention Trials Network, and Advancing Clinical Therapeutics Globally for HIV/AIDS and Other Infections—generate complementary evidence and provide research infrastructure where needed when rapidly evolving prevention and treatment science has implications for IMPAACT priority populations. 

Editorial note: NIAID encourages the use of inclusive language in all communications. The terms related to lactation and pregnancy in this blog reflect the diverse gender identities and experiences of all people who stand to benefit from HIV prevention and cure research. For more information on inclusive language related to pregnancy and family, please visit the NIAID HIV Language Guide.  

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Broadly Neutralizing Antibodies Evaluated in Many HIV Cure Strategies

NIAID Now |

NIAID-supported Clinical Studies Assess Therapeutics for Clearance of HIV from the Reservoir

Antiretroviral therapy (ART) has been a game-changer for people with HIV. But HIV is skilled at “hiding” and can reappear in the blood stream shortly after ART is stopped. That’s why NIAID and partners are investigating strategies to completely clear HIV from a person’s body, effectively curing them, or to reduce it to levels that can be suppressed by their own immune systems. 

Many promising HIV cure strategies use broadly neutralizing antibodies, or bNAbs, which can neutralize a wide range of HIV variants, homing in on and binding to specific viral components, and then acting to destroy the virus by triggering an immune response. Several HIV bNAbs have been developed and tested to determine whether they can prevent or treat HIV. NIAID and partners are evaluating bNAb-based strategies alone and in combination with other immunity-enhancing strategies for HIV clearance in clinical trials in Africa, North and South America, and Southeast Asia.

Finding a cure for HIV is complex, largely due to the tenacity of the virus—it can persist in some tissues or cells without being attacked by the immune system. This is even the case for people whose viral load—the amount of virus in the blood—is suppressed below a level that can be detected by routine diagnostic tools. As a result, most people who experience an interruption in treatment will experience a viral rebound, in which the previously dormant virus begins to replicate and can attack the immune system. This problem is especially urgent for people with HIV who have limited access to treatment, including those in areas with limited resources. A treatment that can be given for a limited time to stop the virus from replicating long term, or one that removes it from the body entirely, could eliminate the need for lifelong treatment, improve quality of life for people with HIV, and reduce further HIV transmission.  

Two studies beginning this summer are assessing the use of bNAbs to enable HIV remission in people with HIV in African countries. Both studies will include closely monitored ART interruption to examine whether bNAbs can lead to long-term ART-free control of HIV. One trial, called Pausing Antiretroviral Treatment Under Structured Evaluation (PAUSE), enrolled its first participant in June 2024 and continues to enroll people with HIV in Botswana, Malawi, and South Africa. Participants on ART with no detectable virus in their blood stream will receive two long-acting bNAbs (3BNC117-LS-J and 10-1074-LS-J) and then pause ART to determine whether the bNAbs are sufficient to control HIV in the body when ART is stopped. 

A second study, called Antiretrovirals Combined With Antibodies for HIV-1 Cure In Africa (ACACIA), is starting soon and will examine the bNAbs 3BNC117-LS (also known as teropavimab) and 10-1074-LS (also known as zinlirvimab) in adults living with HIV in Botswana, Malawi, South Africa and Zimbabwe who are beginning ART. The bNAbs will be given while there is still virus in the blood stream to see if they can enhance the body’s immune response to HIV, which could reduce the amount of virus that hides in viral reservoirs in the body. Once the bNAbs are no longer present in the body, ART will be interrupted for each participant, and they will be evaluated to determine how long viral suppression is maintained without ART and whether the bNAbs affect the immune response to HIV.

Researchers are also evaluating bNAb-based HIV cure strategies in children through the International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) Network. The IMPAACT P1115 study has examined very early HIV treatment strategies in infants who were exposed to or acquired HIV before birth. The study is assessing VRC01 and VRC07-523LS to see whether these bNAbs, when given with ART early in life, may enable ART-free remission in children. Another study, IMPAACT 2042, will evaluate the use of three bNAbs, VRC07-523LS, PGDM1400LS, and PGT121.414.LS, in children and young adults with HIV between the ages of 2 and 25 to determine whether the bNAbs can be part of a strategy to suppress HIV and clear the virus from the body.

Other clinical studies are combining bNAbs with therapeutic vaccines for HIV clearance. These vaccines are designed to improve the immune response to the virus in a person with HIV. ACTG A5374, which enrolled its first participant in early 2024, is evaluating the bNAbs teropavimab and zinlirvimab in combination with the therapeutic vaccines ChAdOx1.HIV cons1/62 and MVA.HIV cons3/4 and an immune booster called vesatolimod. The trial will assess the safety of the regimen in people with HIV in the U.S. and Brazil, and whether the combination can eliminate cells harboring HIV and prevent viral reservoirs from reactivating when ART is interrupted. 

The findings from these and related trials will provide researchers with new insights into how to effectively treat HIV or clear the virus from people’s bodies. This work is implemented by leveraging the strengths of all of the NIH-funded HIV clinical trials networks and collaborating institutions. The Bill & Melinda Gates Foundation is co-funding PAUSE and ACACIA. IMPAACT P1115 and 2042 are co-funded by the NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development.

The bNAbs VRC01 and VRC07-523LS were developed by NIAID’s Vaccine Research Center and Division of Intramural Research. The bNAbs 3BNC117 and 10-1074 were discovered by researchers at the Rockefeller University, funded in part by NIAID. PGT121.414.LS and PGDM1400LS are being developed by NIAID and collaborators.

Additional information about the trials: 

  • ACTG A5374: ClinicalTrials.gov ID NCT067071767.
  • ACTG A5416 (also called PAUSE): ClinicalTrials.gov ID NCT06031272.
  • ACTG A5417 (also called ACACIA): ClinicalTrials.gov ID NCT06205602.
  • IMPAACT P1115: ClinicalTrials.gov ID NCT02140255. (Recent P1115 findings were presented at the 2024 Conference on Retroviruses and Opportunistic Infections.)
  • IMPAACT 2042 (also called Tatelo Plus): ClinicalTrials.gov ID coming soon.

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Contribute to Rare Diseases Clinical Research Consortia

Funding News Editions:
See more articles in this edition

The notice of funding opportunity (NOFO) Rare Diseases Clinical Research Consortia (RDCRC) for the Rare Diseases Clinical Research Network (RDCRN) (U54, Clinical Trial Optional) aims to invite new and renewal applications for the individual RDCRCs that comprise the Rare Diseases Clinical Research Network, which since 2002 has supported a broad range of clinical research, including clinical trial readiness, natural history studies, identification of biomarkers and outcome measures, and early-phase clinical trials.

Each RDCRC will advance and improve diagnosis, management, and treatment of numerous, diverse rare diseases through highly collaborative, multi-site, patient-centric, translational, and clinical research. In this context, a rare disease is defined by law as a condition affecting fewer than 200,000 individuals in the United States. Special emphasis will be placed on the early and timely identification of individuals with rare diseases and clinical trial readiness. 

RDCRC Elements 

Each RDCRC application must indicate at least three different rare diseases that may share common pathways or mechanisms of action or organ system, and may be defined as:  

  • Conditions—a particular state of being that limits/restricts something else.  
  • Disorders—abnormal physical or mental conditions or ailments.  
  • Syndromes—a group of symptoms that occur together, or a condition characterized by a set of associated symptoms.  
  • Diseases—a disorder of structure or function that affects a specific location and is not simply a result of physical injury.  

Each RDCRC is required to have one natural history or longitudinal study. Each research study must be conducted at multiple sites; however, pilot studies may be conducted at a single site.  

Additionally, each RDCRC must form partnerships with patient advocacy groups. 

RDCRC Structure 

The structural requirements of an RDCRC under this NOFO are as follows: 

  • Administrative Core—responsible for activities such as administrative support for RDCRC, management and sharing of data and biospecimens, and coordination of patient advocacy groups participation. 
  • Pilot/Feasibility Governance Core—established to enable future innovative single- or multi-site pilot studies aimed at advancing the diagnosis, clinical trial readiness, management, and/or treatment of rare diseases. Pilot projects that extend RDCRC research collaborations beyond the RDCRN are allowed. Pilot projects may be awarded to institutions that are not already RDCRC members; however, execution of new subawards may be required. 
  • Career Enhancement Core—to provide support for career enhancement-related activities and support the education of diverse candidates in rare diseases research. 
  • Clinical Research Projects (two to four)—one of the projects must be longitudinal in nature with the intent of understanding the clinical course of the disease and helping inform future clinical trials (e.g., natural history studies).  

Also, note that RDCRCs will receive resources and services from the RDCRN’s Data Management and Coordinating Center, which will be established through the companion NOFO Single Source for the Continuation of the Data Management and Coordinating Center (DMCC) for Rare Diseases Clinical Research Network (RDCRN) (U2C, Clinical Trial Not Allowed). Applicants should ensure all planned activities involve coordination with the DMCC as not to replicate efforts. 

NIAID Research Interests and Priorities 

As a participating institute, NIAID is especially interested in research activities on rare diseases classified into four areas: infectious diseases, primary immunodeficiency diseases, autoimmune diseases, and allergic diseases. 

  • Infectious diseases include diseases caused by bacteria, parasites, viruses, fungi, and other pathogens. Research on rare infectious diseases is aimed at delineating mechanisms of disease pathogenesis and developing more effective diagnostic, treatment, and prevention strategies. 
  • Primary immunodeficiency diseases are hereditary disorders caused by intrinsic defects in the cells of the immune system and are characterized by unusual susceptibility to infection. NIAID research is focused on the identification of gene defects and immunologic abnormalities that lead to defective function, and the development of new approaches for the diagnosis and treatment of primary immunodeficiency disease, including gene transfer as an effective and curative therapy. 
  • Autoimmune diseases are diseases in which the immune system mistakenly attacks and damages the body's own cells and tissues. NIAID research is focused on the identification of mechanisms of pathogenesis and the development of new approaches to prevention and treatment. 
  • Allergies are inappropriate or exaggerated reactions of the immune system to substances that cause no symptoms in the majority of people. 

For applications that propose clinical trials, NIAID strongly encourages applicants to contact NIAID staff early in the planning stage for assistance meeting NIAID clinical trial requirements. 

Make Sure Your Application Is Responsive  

The following types of studies are not responsive to this NOFO. We will consider applications proposing such studies nonresponsive, withdraw them from review, and not consider them for funding. 

  • Single site clinical studies 
  • Phase III clinical trials as part of Clinical Research Projects 
  • Fewer than three rare diseases included
  • Absence of at least one longitudinal study
  • Proposing less than two or more than four Clinical Research Projects
  • Absence of patient advocacy group involvement 
  • Basic sciences studies 
  • Applications that propose any type of animal studies within the RDCRC. The use of in vitro models must be relevant to clinical endpoints (i.e., testing drugs, validating biomarkers versus more basic research)  

Refer to the NOFO for additional details. 

Other Application Elements 

Your application must include milestones. Describe how measurable outcomes will be collected using rigorous and transparent experimental approaches. Future year support is contingent on satisfactory achievement of performance milestones. If milestones are not achieved fully, NIH may request development of a remedial plan and more frequent monitoring of progress. 

Applicants may request up to $1 million in annual direct costs. All costs must be well justified in accordance with the activity proposed. 

Applicants may request up to 5 years of support, but the actual needs of the research should determine the length of the project period.  

The deadline to apply is August 13, 2024. 

Have Questions? 

Staff from the National Center for Advancing Translational Sciences have assembled a helpful set of Questions and Answers about this initiative. 

You can also watch the webinar recording Technical Assistance Webinars for PAR-24-206: “RDCRC for the RDCRN (U54, Clinical Trial Optional)”.  

For questions specific to NIAID’s areas of research interest, reach out to our scientific/research contact Dr. Ruth Florese at ruth.florese@niaid.nih.gov or 301-761-6284.

Contact Us

Email us at deaweb@niaid.nih.gov for help navigating NIAID’s grant and contract policies and procedures.