NIAID Research to Eliminate the Threat of Viral Hepatitis Across the Globe

NIAID Now |

A Year of Hepatitis Advances to Mark World Hepatitis Day

Viral hepatitis affects the lives of about one in twenty people in the world, resulting in over a million deaths each year. NIAID is working on many ways to prevent and treat the different types of hepatitis, including the development of vaccines and improved therapeutics and diagnostics. July 28 is observed annually as World Hepatitis Day, providing an opportunity to reflect on the impact of hepatitis on global health and focus on strategies to reduce its burden. To observe World Hepatitis Day, NIAID highlights recent advancements researchers have made in these areas.

Hepatitis is an inflammation of the liver, which can cause liver damage that is fatal in some cases. Most hepatitis cases are caused by viruses, although other infections, heavy alcohol use, exposure to toxins or some medications, or autoimmune disease can also cause hepatitis. There are five main virus types that cause hepatitis, types A, B, C, D and E. The different hepatitis viruses are spread in different ways, and each has unique impacts on health. Hepatitis A and E are generally spread through contaminated food and water, while hepatitis B, C and D are spread through body fluids. People with HIV have an increased risk of severe disease when hepatitis A, B, or C is present in the body. Additionally, presence of hepatitis B and C can affect treatment for HIV. Because of these interactions, people with HIV are disproportionately impacted by viral hepatitis.

Progress Towards Effective Hepatitis B Vaccines for People with HIV

Conventional vaccines against hepatitis B are sometimes unable to provide adequate immunity to people with HIV. An ongoing clinical trial is evaluating the effects of a vaccine against hepatitis B called HepB-CPG (also known as Heplisav-B) in people with HIV. HepB-CPG was shown to provide people with HIV high levels of immunity against hepatitis B. Researchers specifically looked at the effects of HepB-CPG vaccine in people with HIV who had previously not responded to conventional hepatitis B vaccines. The HepB-CPG vaccine uses an adjuvant—or immune booster—called CPG-1018. In the study, they compared HepB-CPG to a hepatitis vaccine that uses alum, a more conventional adjuvant, instead of CPG-1018. The researchers found that the vaccine containing CPG-1018 was superior to the conventional hepatitis B vaccine. The vaccines were safe and well tolerated. This work provides important evidence supporting the further development of vaccines for prevention of hepatitis B in people with HIV. The study is being led by ACTG, an NIAID-led clinical trials network. 

Exploring New Pathways of Immunity Against Hepatitis C

Hepatitis C can be cured with antivirals, but there are currently no vaccines against this type of hepatitis, due in part to the large number of variants and rapid evolution of the virus. People cured from hepatitis C can also become reinfected. The number of people diagnosed with hepatitis C is increasing, and a vaccine would be an important tool in preventing the spread of this dangerous virus, which can cause liver failure and cancer. Some people naturally clear hepatitis C from their bodies and have protective immunity against developing the disease when re-exposed to the virus. NIAID-funded researchers are investigating the immune responses in these individuals compared to those who develop persistent infections. The researchers found that neutralizing antibodies contributed to the clearance of hepatitis C virus from people’s bodies, and that these antibodies were directed to specific sites on the surface of the virus. Investigating how these antibodies are produced and how they target the virus may help researchers develop vaccines against hepatitis C. 

Advancing the Development of Vaccines Against Hepatitis E

Hepatitis E is the leading cause of acute hepatitis worldwide, causing about 20 million infections and 70,000 deaths each year, with greater impacts in regions with limited access to resources. There are no treatments for acute hepatitis E or approved vaccines against the virus. A vaccine is in development, called HEV-239, which was recently found in a NIAID-supported trial to be safe and achieve a durable immune response in adults in the United States. These promising results support the evaluation of the vaccine in in further clinical trials.

Understanding Hepatitis B-Associated Liver Cancer

NIAID researchers are studying diseases resulting from viral hepatitis-related liver damage, including a type of liver cancer called hepatitis B-associated hepatocellular carcinoma (HCC), which causes malignant tumors in the liver. Although immunotherapy can be effective to treat various forms of solid tumors, HCC-related tumors often do not respond to this treatment. To understand why, researchers carefully studied the tumor microenvironment—the specific molecular and cellular conditions that exist inside tumors—in 12 people with HCC. They found that two distinct subtypes of tumors existed in people with HCC. In about half of the people, the microenvironments of the tumors had high levels of immune activity, while lower levels were observed in the tumors in the other half of the people. This finding may help scientists understand how people with these types of HCC respond to treatments and could allow for development of treatments tailored to individuals with different subtypes.

New Animal Models for Hepatitis B and C

NIAID is funding several new projects focused on developing small animal models to understand and combat hepatitis B and C. This work is important because research on these viruses has been hindered by the lack of available animal models to study promising preventive and therapeutic concepts. Recipients of the new awards include:

  • Wake Forest University for a project titled “Novel mouse models of hepatitis B virus infection and replication.” Guangxian Luo is the principal investigator. (Grant number: R01 AI183855-01.)
  • The Research Institute at Nationwide Children’s Hospital for a project titled “Animal Model to study heterogeneous outcomes of HCV Infection and Pathogenesis. Amit Kapoor is the principal investigator. (Grant number: R01 AI183877-01.)
  • The Rockefeller University for a project titled “Breaching the species barrier: Towards an immunocompetent HBV-susceptible mouse model.” Charles Rice is the principal investigator. (Grant number: R01 AI183884-01.)
  • Georgetown University for a project called “Developing woodchucks susceptible to hepatitis B virus infection by modifying the virus or host.” Stephan Menne and Jianming Hu (at Penn State College of Medicine) are the principal investigators. (Grant number: R01 AI183788-01.) 

These advances and active projects underscore the important work NIAID is doing to prevent and treat viral hepatitis, with the aim of reducing the global burden of this disease. 

For more information, please visit NIAID’s hepatitis research page.

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Features of H5N1 Influenza Viruses in Dairy Cows May Facilitate Infection, Transmission in Mammals

A series of experiments with highly pathogenic H5N1 avian influenza (HPAI H5N1) viruses circulating in infected U.S. dairy cattle found that viruses derived from lactating dairy cattle induced severe disease in mice and ferrets when administered via intranasal inoculation. The virus from the H5N1-infected cows bound to both avian (bird) and human-type cellular receptors, but, importantly, did not transmit efficiently among ferrets exposed via respiratory droplets.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

NIAID Preclinical Services to Address Key Product Development Gaps

NIAID offers a comprehensive suite of resources and services that address gaps along the product development pathway. These services assist in the development of the next generation of vaccines, diagnostics, and therapeutics for a broad array of bacterial, viral, fungal, and parasitic pathogens. Eligible investigators worldwide can get access to expertise, research materials, and state-of-the-art technologies.

NIH-Sponsored Trial of Nasal COVID-19 Vaccine Opens

A Phase 1 trial testing the safety of an experimental nasal vaccine that may provide enhanced breadth of protection against emerging variants of SARS-CoV-2, the virus that causes COVID-19, is now enrolling healthy adults at three sites in the United States. The National Institutes of Health (NIH) is sponsoring the first-in-human trial of the investigational vaccine, which was designed and tested in pre-clinical studies by scientists from NIH’s National Institute of Allergy and Infectious Diseases (NIAID) Laboratory of Infectious Diseases. 

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

NIH-Sponsored Trial of Enterovirus D68 Therapeutic Begins

The National Institutes of Health (NIH) is sponsoring a clinical trial to evaluate the safety of an investigational monoclonal antibody to treat enterovirus D68 (EV-D68), which can cause severe respiratory and neurological diseases such as acute flaccid myelitis (AFM) – similar to polio. Scientists are striving to better understand AFM, which has emerged in the United States with spikes in cases every other year, primarily in the late-summer months over the last decade. The U.S. Centers for Disease Control and Prevention (CDC) identified increases in AFM cases in 2014, 2016, and 2018. EV-D68 is a virus of growing public health concern due to its association with the intermittent AFM outbreaks.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Our Words Have Power—NIAID Embraces Respectful, Inclusive, and Person-First Language

NIAID Now |

by Jeanne Marrazzo, M.D., M.P.H., NIAID Director

The power of word choice is obvious every day in my life as a researcher, clinician, colleague, patient, spouse, and friend. Language can inform, delight and inspire, but it can mislead and wound if words are not chosen carefully. At worst, language can invoke stigma, shame, and even violence, all of which undermine NIAID’s mission as part of a health agency. Our institute is responsible not only for advancing scientific knowledge, but for doing so in a way that honors the dignity, individuality, and autonomy of the people affected by the health issues we address. For this reason, I am very proud to share the updated NIAID HIV Language Guide, a thoroughly vetted resource to inform our written and verbal communications.

NIAID has long been engaged in rich and multifaceted collaborations with HIV advocates and community stakeholders—partnerships that I prize and am honored to carry forward. Among their many contributions to HIV science, our community partners ensure that our language evolves as fluidly as our knowledge of the virus itself. Through their insights, the words we choose to describe the pathogen, its effects on the body, and the people who are affected by and living with HIV, have become increasingly person-centered. This progress reflects and upholds a commitment to avoid defining people by the disease with which they live. 

Despite this progress, the scientific community often lags in adopting evolving language, and many of the terms and phrases we use today are still insensitive and disrespectful to the people we aim to serve. Harmful language undermines people’s trust in biomedical research, and language-driven stigma prevents people from seeking health services which provide benefit. Non-inclusive language perpetuates knowledge gaps, limiting our ability to fully understand the people participating in research. As scientists and public health practitioners, we cannot be cavalier about language. Our words matter.

This guide originated as a resource for the HIV field, but respectful, inclusive, and person-first language is essential in all scientific communication. To that end, I am committed to following the NIAID HIV Language Guide in my communications, and strongly encourage all NIAID staff, funded research networks, sites, centers, investigators, and partners to do the same. We will not always get it right, but we will continue to try. We must support each other in learning, hold each other accountable, and continue to adapt as terms and norms change. 

For more information about the language guide and supporting resources, please visit https://www.niaid.nih.gov/research/hiv-language-guide. Spanish and Portuguese translations are coming soon.

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

High H5N1 Influenza Levels Found in Mice Given Raw Milk from Infected Dairy Cows

Mice administered raw milk samples from dairy cows infected with H5N1 influenza experienced high virus levels in their respiratory organs and lower virus levels in other vital organs, according to findings published in the New England Journal of Medicine. The results suggest that consumption of raw milk by animals poses a risk for H5N1 infection and raises questions about its potential risk in humans. 

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Central Africa ICEMR: Unraveling the Drivers of Persistent Malaria Transmission in Cameroon: A Systems Approach

East Africa ICEMR: Program for Resistance, Immunology, Surveillance, and Modeling of Malaria in Uganda (PRISM)

Ethiopia ICEMR: Malaria Epidemiology and Vector Biology of Invasive Anopheles stephensi Across Rural and Urban Landscapes in Ethiopia

Lead Institution: University of California, Irvine, USA

ICEMR website: https://www.icemreastafrica.org/

Research Areas

The overall goal of this project is to assess the impact of Anopheles stephensi invasion and spread on malaria epidemiology and transmission, develop efficient tools and methods for surveillance of An. stephensi, and identify cost-effective vector control methods that can be adapted to settings of varying urbanicities in Ethiopia.