Fabiano Oliveira, M.D., Ph.D.

Section or Unit Name
Vector Molecular Biology Section

Highlight

Exclude from directory
Off
Section/Unit: Location
This Researcher/Clinician’s Person Page
Program Description

Our research focuses on the complex interactions between the human immune system and insect-derived molecules, and how these interactions can influence the outcomes of vector-borne diseases such as dengue, Zika, Chikungunya, and leishmaniasis. When an insect bites, it injects hundreds of arthropod molecules into the host's skin, alerting our immune system to these foreign agents. If the insect is infected with a pathogen, the microorganism is delivered along with these insect-derived molecules. Our immune response to these molecules over time can either help or hinder pathogen establishment, ultimately affecting the disease outcome.

Our work is conducted at two primary locations: the Laboratory of Malaria and Vector Research (LMVR) in Rockville, which is equipped with cutting-edge technologies, and the NIAID International Center of Excellence in Research (ICER) in Cambodia, where we conduct field observations and studies.

At LMVR-Rockville, we use advanced technologies and methodologies to explore the molecular and immunological mechanisms underlying the human response to arthropod bites and the pathogens they transmit. In Cambodia, at the NIAID ICER, we engage in extensive fieldwork to gather critical data and observations directly from affected populations. By integrating field data with laboratory findings, we aim to develop robust hypotheses that can lead to effective strategies for disease mitigation and control.

Our multidisciplinary approach allows us to bridge the gap between laboratory research and field applications. By understanding how the human immune system responds to arthropod molecules, we can identify potential targets for vaccines, therapeutics, and diagnostic tools. Additionally, our research contributes to the development of innovative vector control strategies that can reduce the incidence of these debilitating diseases.

Through collaboration with local communities, healthcare providers, and international partners, we strive to translate our scientific discoveries into practical solutions that can improve public health outcomes. Our ultimate goal is to reduce the burden of vector-borne diseases and enhance the quality of life for people living in endemic regions.

Our research aims to improve dengue prevention and treatment strategies for U.S. travelers, personnel in endemic areas, and regions with reported dengue cases, such as Hawaii, Florida, Texas, Puerto Rico, the U.S. Virgin Islands, and Guam. Enhanced predictive, management, diagnostic, and preventive measures for dengue outbreaks are particularly crucial for these at-risk regions. The development and use of prophylactic therapeutics targeting specific immune responses to mosquito bites could reduce the transmission of arboviruses, including eastern equine encephalitis, Jamestown Canyon, La Crosse, Powassan, St. Louis encephalitis, and West Nile viruses. Improved diagnostic capabilities for vector-borne diseases and emerging infections will lead to better patient outcomes. 

Selected Publications

Manning JE, Chea S, Parker DM, Bohl JA, Lay S, Mateja A, Man S, Nhek S, Ponce A, Sreng S, Kong D, Kimsan S, Meneses C, Fay MP, Suon S, Huy R, Lon C, Leang R, Oliveira F. Development of Inapparent Dengue Associated With Increased Antibody Levels to Aedes aegypti Salivary Proteins: A Longitudinal Dengue Cohort in Cambodia. J Infect Dis. 2022 Oct 17;226(8):1327-1337.

Guerrero D, Vo HTM, Lon C, Bohl JA, Nhik S, Chea S, Man S, Sreng S, Pacheco AR, Ly S, Sath R, Lay S, Missé D, Huy R, Leang R, Kry H, Valenzuela JG, Oliveira F, Cantaert T, Manning JE. Evaluation of cutaneous immune response in a controlled human in vivo model of mosquito bites. Nat Commun. 2022 Nov 17;13(1):7036.

Chea S, Willen L, Nhek S, Ly P, Tang K, Oristian J, Salas-Carrillo R, Ponce A, Leon PCV, Kong D, Ly S, Sath R, Lon C, Leang R, Huy R, Yek C, Valenzuela JG, Calvo E, Manning JE, Oliveira F. Antibodies to Aedes aegypti D7L salivary proteins as a new serological tool to estimate human exposure to Aedes mosquitoes. Front Immunol. 2024 May 1;15:1368066.

Guimaraes-Costa AB, Shannon JP, Waclawiak I, Oliveira J, Meneses C, de Castro W, Wen X, Brzostowski J, Serafim TD, Andersen JF, Hickman HD, Kamhawi S, Valenzuela JG, Oliveira F. A sand fly salivary protein acts as a neutrophil chemoattractant. Nat Commun. 2021 May 28;12(1):3213.

Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, Abdeladhim M, Teixeira C, Meneses C, Kleeman LT, Guimarães-Costa AB, Rowland TE, Gilmore D, Doumbia S, Reed SG, Lawyer PG, Andersen JF, Kamhawi S, Valenzuela JG. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med. 2015 Jun 3;7(290):290ra90.

Manning JE, Oliveira F, Coutinho-Abreu IV, Herbert S, Meneses C, Kamhawi S, Baus HA, Han A, Czajkowski L, Rosas LA, Cervantes-Medina A, Athota R, Reed S, Mateja A, Hunsberger S, James E, Pleguezuelos O, Stoloff G, Valenzuela JG, Memoli MJ. Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. Lancet. 2020 Jun 27;395(10242):1998-2007.

Visit PubMed for a complete publication listing.

Major Areas of Research
  • Characterization of human immune response to ticks, mosquito, and sand fly saliva in the context of medically significant vector-borne diseases (Lyme disease, Powassan, dengue, malaria, and leishmaniasis)
  • Clinical and field epidemiology of the impact of mosquito saliva immunity on the outcome of dengue, Zika, and other diseases carried by mosquitos
  • Strategies to block vector-borne diseases by targeting the arthropod vector and interruption transmission to the human host

Influenza A Viruses Adapt Shape in Response to Environmental Pressures

Influenza A virus particles strategically adapt their shape – to become either spheres or larger filaments – to favor their ability to infect cells depending on environmental conditions, a new NIAID study published in Nature Microbiology reveals. This previously unrecognized response could help explain how influenza A and other viruses persist in populations, evade immune responses, and acquire adaptive mutations. The scientists designed the study to determine why many influenza A virus particles exist as filaments, which requires more energy to form than a sphere.

Contact

Submit a Media Request

Contact the NIAID News & Science Writing Branch.

301-402-1663
niaidnews@niaid.nih.gov
All Media Contacts

Vaccine Protective Against H5N1 Influenza from Cattle

NIAID Now |

An experimental vaccine designed against the highly pathogenic avian influenza H5N1 (HPAI H5N1) virus circulating in U.S. cattle was fully protective in research mice in a new study published in Nature Communications. NIAID scientists at Rocky Mountain Laboratories (RML) in Hamilton, Montana, led the animal study with colleagues from HDT Bio in Seattle who developed the replicating RNA vaccine (repRNA) platform.

Along with confirming that a single immunization with the experimental vaccine was effective against the new flu type in cattle (HPAI A H5N1 clade 2.3.4.4b), the study also allowed scientists to evaluate the vaccine method for “cross protection.” Would it work against the new virus if designed with components used in stockpiled vaccines from an older H5N1 virus (A/Vietnam/1203/2004)? They found that when the test vaccine used a design from the older H5N1 virus, protection was diminished. The findings suggest that the HPAI H5N1 circulating in the U.S. may be able to evade immunity from older H5N1 viruses.

Scientists designed the repRNA vaccine to express the protective vaccine components, as well as the RNA replication machinery derived from an alphavirus. This allows for robust expression of the protective vaccine components upon delivery with LION™, a proprietary nanoparticle formulation. The repRNA/LION technology is the basis of a vaccine that received emergency use authorization in India for COVID-19. Additional applications of repRNA/LION are advancing toward clinical trials for other serious viral diseases after showing effectiveness against several different viruses in the lab.

Scientists at RML and HDT Bio are continuing to develop the vaccine platform, and evaluations in animal models developed at RML are ongoing.

Reference: D Hawman, et al. Clade 2.3.4.4b but not historical clade 1 HA replicating RNA vaccine protects against bovine H5N1 challenge in mice. Nature Communications DOI: https://doi.org/10.1038/s41467-024-55546-7 (2025).
 

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

NIAID Study Describes Successful Treatment Regimen for Person with Multidrug-Resistant HIV

NIAID Now |

Although antiretroviral therapy (ART) is safe and highly effective at treating HIV, some HIV variants do not respond to most ART regimens. Those HIV variants are known as multidrug-resistant (MDR) HIV. People who acquire or develop MDR HIV have few treatment options and a greater likelihood of experiencing or dying from HIV-related complications. A study from NIAID researchers published in Nature Medicine found that a novel treatment regimen including an investigational monoclonal antibody (mAb) called UB-421 (semzuvolimab), and the Food and Drug Administration (FDA)-approved antiretroviral drugs (ARVs) including lenacapavir, suppressed HIV in a person with MDR HIV. This finding could pave the way for further research and development on a novel treatment approach for people with MDR HIV.

MDR HIV can occur in people who have been prescribed an ART regimen that does not fully suppress HIV replication, had a lapse in treatment, or acquired MDR HIV directly. While MDR HIV is relatively uncommon in high-resource settings, it is an increasing threat to people with limited access to quality health care. In the new study, the researchers aimed to identify a regimen that could be used to manage MDR HIV in people with limited treatment options. UB-421 was included in the regimen because prior studies have shown that it may be effective against drug-resistant HIV variants. The regimen also included lenacapavir, which is currently used for the treatment of MDR HIV, and the ARVs tenofovir and emtricitabine. Because drug-resistant HIV variants continue to emerge, the researchers are investigating new avenues of treatment for people with MDR HIV.

The study was led by Tae-Wook Chun, Ph.D., chief of the HIV Immunology Section in NIAID’s Laboratory of Immunoregulation, and conducted at the Institute’s HIV Outpatient Clinic. The regimen was evaluated in a man with MDR HIV and Kaposi sarcoma (KS), a rare cancer that occurs in people with suppressed immune systems. The 58-year-old participant had taken several ART regimens over three decades living with HIV and developed resistance to all available antiretroviral drugs. Analysis of virus from the participant indicated that it was also resistant to nearly all currently licensed and investigational mAbs except for UB-421. During the 70-week treatment period, the participant received UB-421 and lenacapavir-based ART to suppress HIV replication, as well as the antibiotics trimethoprim/sulfamethoxazole and azithromycin, and chemotherapy and immunotherapy drugs for KS.

Within two weeks of beginning the regimen, the levels of HIV in the participant’s blood rapidly decreased. HIV levels continued to decrease at a lower rate for the next 30 weeks. The researchers also found that the participant experienced an increase in the levels of immune cells called CD4+ T cells, indicating a recovery in the patient’s immune system. UB-421 acts by attaching to the surface of the T cells at the CD4+ T-cell receptor, preventing HIV from binding and thus blocking a critical step in HIV infection. Examination of the participant’s T cells found that UB-421 fully blocked the CD4 receptors during the majority of the treatment period. The regimen suppressed replication of MDR HIV in the patient, lowering the level of virus in the blood serum below the detection limit of 20 particles per milliliter after one year of treatment.

This study lays the groundwork for possible new treatments for people with MDR HIV for whom treatment options are limited. The authors note that UB-421 is a promising therapeutic alongside ART regimens for MDR HIV. These findings also support the evaluation of the study treatment regimen in a larger group of people. 

Reference:

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Subclinical Disease in Monkeys Exposed to H5N1 by Mouth and Stomach

NIAID Now |

Subclinical Disease in Monkeys Exposed to H5N1 by Mouth and Stomach

A new study published in Nature found that highly pathogenic H5N1 avian influenza virus (HPAI H5N1) administered directly into the mouth and stomach of research monkeys caused self-limiting infection with no recognizable clinical signs of disease. By comparison, other routes of transmission resulted in mild or severe disease. The findings suggest that drinking raw milk contaminated with H5N1 virus can result in infection but may be less likely to lead to severe illness. Nevertheless, exposure by raw milk – which is a source of several foodborne illnesses – should be avoided to prevent H5N1 infection and potential further spread.

The research team, from NIH’s National Institute of Allergy and Infectious Diseases (NIAID), exposed cynomolgus macaques to the same clade 2.3.4.4b HPAI H5N1 virus circulating in U.S. cattle. Transmission routes included via the nose, windpipe (trachea) or directly into the mouth and stomach to mimic infection routes in people. Animals exposed via the nose and windpipe became infected, developed pneumonia and had varying degrees of disease. Animals infected in a manner that mimicked drinking had a more limited infection with no obvious disease signs. To what extent this work mirrors human infection remains unclear.

The study does suggest that infection through contaminated liquids like raw milk represents a risk for HPAI H5N1 infection of primates. The work cites the “local environment” in the stomach as potentially inactivating the virus and thus, possibly reducing the exposure dose. Scientists at NIAID’s Rocky Mountain Laboratories in Hamilton, Montana, led the work.

They exposed six animals each via the nose to mimic an upper-respiratory tract infection; the windpipe to mimic a lower-respiratory tract infection; and in the mouth and stomach to mimic consuming contaminated products. They used a dose of virus close to what has been found in contaminated raw milk. Researchers regularly monitored and examined animals for up to 14 days.

Animals exposed in the mouth and stomach became infected but showed no signs of influenza illness throughout the study. Animals exposed in the nose showed mild respiratory disease, peaking at day 10. Animals exposed in the windpipe showed severe respiratory illness within a week.

Reference: K Rosenke, A Griffin, F Kaiser, et al. Pathogenesis of bovine H5N1 clade 2.3.4.4b infection in Macaques. Nature DOI: 10.1038/s41586-025-08609-8 (2025).

Contact Information

Contact the NIAID Media Team.

301-402-1663
niaidnews@niaid.nih.gov

Search NIAID Blog

Michael S. Abers, M.D.

Section or Unit Name
Opportunistic Bacterial Pathogenesis Unit (OBPU)
Exclude from directory
Off
Section/Unit: Year Established
Section/Unit: Location
This Researcher/Clinician’s Person Page
Program Description

The Opportunistic Bacterial Pathogenesis Unit is interested in Nocardia infections. Our bench-to-bedside research program incorporates immunology, microbiology, genetics, and bioinformatics to investigate the pathogenesis of nocardiosis. A major goal of our research is to identify the key immunological mechanisms that control Nocardia. Insights from this work will inform future efforts to develop host-directed therapies for nocardiosis. Another area of interest is host- and pathogen-specific factors that determine patterns of dissemination and patient outcomes.

Selected Publications

Visit PubMed for a complete publication list.

Additional Information
Major Areas of Research
  • Inherited and acquired susceptibility to Nocardia infections (nocardiosis)
  • Host defense mechanisms that protect against nocardiosis
  • Development of host-directed therapies for Nocardia infection

Dupilumab as Add-On Therapy for Hypereosinophilic Syndrome With Partial Clinical Response to Eosinophil-Depleting Biologic Agents

The objective of this study is to test an approved drug (dupilumab), combined with other drugs, in people with Hypereosinophilic syndrome (HES).

Contact Information

Office/Contact: NIH Clinical Center Office of Patient Recruitment (OPR)
Phone: 800-411-1222
TTY: TTY dial 711
Email: ccopr@nih.gov
 

A Biorepository of Multiple Allergic Diseases (MADREP) With Longitudinal Follow-Up

To create a repository of clinical, laboratory, and diagnostic data and specimens from a cohort of suspected or confirmed atopic or allergic individuals with diverse disorders seen by allergist-immunologists and rhinologists.

Contact Information

Office/Contact: NIH Clinical Center Office of Patient Recruitment (OPR)
Phone: 800-411-1222
TTY: TTY dial 711
Email: ccopr@nih.gov
 

Study of the ITK Inhibitor Soquelitinib to Reduce Lymphoproliferation and Improve Cytopenias in Autoimmune Lymphoproliferative Syndrome (ALPS)-FAS Patients

Autoimmune lymphoproliferative syndrome (ALPS) is a rare disorder of the immune system caused by a mutation in the FAS gene. The objective of this study is to determine the efficacy of soquelitinib in reducing spleen volume or target lymph node volume in people with ALPS-FAS.

Contact Information

Office/Contact: Alanvin Orpia, B.S.N.
Phone: 240-669-2935
Email: alanvin.orpia@nih.gov
 

Healthy Volunteers Needed for Data and Sample Collections

The purpose of this summary is to investigate the disease caused by increased numbers of white blood cells called eosinophils.

Contact Information

Volunteer or get more information
Office: Laboratory of Parasitic Diseases
Phone: 202-929-7756
TTY:
Email: ccopr@nih.gov